11 research outputs found
Optical Design for the Submillimeter and Far InfraRed Experiment (SAFIRE)
The SAFIRE, the Submillimeter and Far InfraRed Experiment, was designed for interstellar physics in the airborne Observatory SOFIA. SAFIRE is a cryogenic Echelle Grating spectrograph for covering 27 to 470 microns; with R ranging from 2-6,000. Here we will discuss the details of the optical design, the design process, and the performance of the instrumen
ATLAS Beam Steering Mechanism (BSM) Lessons Learned
This paper describes the design, testing, and lessons learned during the development of the Advanced Topographic Laser Altimeter System (ATLAS) Beam Steering Mechanism (BSM). The BSM is a 2 degree-of-freedom tip-tilt mechanism for the purpose of pointing a flat mirror to tightly control the co-alignment of the transmitted laser and the receiver telescope of the ATLAS instrument. The high resolution needs of the mission resulted in sub-arcsecond pointing and knowledge requirements, which have been met. Development of the methodology to verify performance required significant effort. The BSM will fly as part of the Ice, Cloud, and Elevation Satellite II Mission (ICESat II), which is scheduled to be launched in 2017. The ICESat II primary mission is to map the Earth's surface topography for the determination of seasonal changes of ice sheet thickness and vegetation canopy thickness to establish long-term trends
Ranolazine in Symptomatic Diabetic Patients Without Obstructive Coronary Artery Disease: Impact on Microvascular and Diastolic Function
Background: Treatments for patients with myocardial ischemia in the absence of angiographic obstructive coronary artery disease are limited. In these patients, particularly those with diabetes mellitus, diffuse coronary atherosclerosis and microvascular dysfunction is a common phenotype and may be accompanied by diastolic dysfunction. Our primary aim was to determine whether ranolazine would quantitatively improve exercise‐stimulated myocardial blood flow and cardiac function in symptomatic diabetic patients without obstructive coronary artery disease. Methods and Results: We conducted a double‐blinded crossover trial with 1:1 random allocation to the order of ranolazine and placebo. At baseline and after each 4‐week treatment arm, left ventricular myocardial blood flow and coronary flow reserve (CFR; primary end point) were measured at rest and after supine bicycle exercise using 13N‐ammonia myocardial perfusion positron emission tomography. Resting echocardiography was also performed. Multilevel mixed‐effects linear regression was used to determine treatment effects. Thirty‐five patients met criteria for inclusion. Ranolazine did not significantly alter rest or postexercise left ventricular myocardial blood flow or CFR. However, patients with lower baseline CFR were more likely to experience improvement in CFR with ranolazine (r=−0.401, P=0.02) than with placebo (r=−0.188, P=0.28). In addition, ranolazine was associated with an improvement in E/septal e′ (P=0.001) and E/lateral e′ (P=0.01). Conclusions: In symptomatic diabetic patients without obstructive coronary artery disease, ranolazine did not change exercise‐stimulated myocardial blood flow or CFR but did modestly improve diastolic function. Patients with more severe baseline impairment in CFR may derive more benefit from ranolazine. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT01754259
Beam Steering Mechanism (BSM) Lessons Learned
This paper describes the design, testing, and lessons learned during the development of the Advanced Topographic Laser Altimeter System (ATLAS) Beam Steering Mechanism (BSM). The BSM is a 2 degree-of-freedom tip-tilt mechanism for the purpose of pointing a flat mirror to tightly control the co-alignment of the transmitted laser and the receiver telescope of the ATLAS instrument. High resolution needs of the mission resulted in sub-arcsecond pointing and knowledge requirements, which have been met. Development of methodology to verify performance was a significant effortadvancement. The BSM will fly as part of the Ice, Cloud, and Elevation Satellite 2 Mission (ICESat 2), which is scheduled to be launched in 2017. The ICESat 2 primary mission is to map the earths surface topography for the determination of seasonal changes of ice sheet thickness as well as vegetation canopy thickness
For copies of reports, updates on project activities and other TALK-related information, contact:
Project funded by the European Community under the Sixth Framework Programme for Research and Technological Development The deliverable identification sheet is to be found on the reverse of this page. Project ref. no. IST-507802 Project acronym TAL
Recommended from our members
ACR Appropriateness Criteria® Noncerebral Vasculitis
Noncerebral vasculitis is a wide-range noninfectious inflammatory disorder affecting the vessels. Vasculitides have been categorized based on the vessel size, such as large-vessel vasculitis, medium-vessel vasculitis, and small-vessel vasculitis. In this document, we cover large-vessel vasculitis and medium-vessel vasculitis. Due to the challenges of vessel biopsy, imaging plays a crucial role in diagnosing this entity. While CTA and MRA can both provide anatomical details of the vessel wall, including wall thickness and enhancement in large-vessel vasculitis, FDG-PET/CT can show functional assessment based on the glycolytic activity of inflammatory cells in the inflamed vessels. Given the size of the vessel in medium-vessel vasculitis, invasive arteriography is still a choice for imaging. However, high-resolution CTA images can depict small-caliber aneurysms, and thus can be utilized in the diagnosis of medium-vessel vasculitis.
The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment
Recommended from our members
The Peregrine Ion Trap Mass Spectrometer (PITMS) Investigation Development and Preflight Planning
The Peregrine Ion Trap Mass Spectrometer (PITMS) is a mass spectrometer instrument that operated during the Astrobotic Peregrine Mission-1 as part of the NASA Commercial Lunar Payload Services initiative. This paper describes the instrument and investigation design, development, and planning conducted by the PITMS team, consisting of a successful partnership between NASA Goddard Space Flight Center (GSFC), The Open University, NASA, and ESA. PITMS was designed to measure the abundance and temporal variability of volatile species in the near-surface lunar exosphere from a landed platform on the lunar surface. The PITMS instrument consisted of a European Space Agency–provided Exospheric Mass Spectrometer (including sensor, electronics, controller, and power supply boards) and a GSFC wrapper that provided structural elements, thermal control, and a deployable dust cover. PITMS was designed to operate as a passive sampler, where ambient gases would enter PITMS through an aperture, diffuse around the mass analyzer cavity, become ionized by electron impact and trapped in an RF field, and then sequentially be released to a detector to build a mass spectrum. PITMS was capable of measuring species with a mass-to-charge ratio (m/z) from 10 to 150 Da, with a mass resolution of approximately 0.5 amu. The PITMS science investigation was planned to be operated by GSFC with an international team of scientists. Though the mission did not achieve its lunar landing, information about the PITMS instrument and planning is provided to be able to understand and effectively use data that will be forthcoming from the investigation
Society for Cardiovascular Magnetic Resonance 2021 cases of SCMR and COVID-19 case collection series
Abstract
The Society for Cardiovascular Magnetic Resonance (SCMR) is an international society focused on the research, education, and clinical application of cardiovascular magnetic resonance (CMR). “Cases of SCMR” is a case series hosted on the SCMR website (
https://www.scmr.org
) that demonstrates the utility and importance of CMR in the clinical diagnosis and management of cardiovascular disease. The COVID-19 Case Collection highlights the impact of coronavirus disease 2019 (COVID-19) on the heart as demonstrated on CMR. Each case in series consists of the clinical presentation and the role of CMR in diagnosis and guiding clinical management. The cases are all instructive and helpful in the approach to patient management. We present a digital archive of the 2021 Cases of SCMR and the 2020 and 2021 COVID-19 Case Collection series of nine cases as a means of further enhancing the education of those interested in CMR and as a means of more readily identifying these cases using a PubMed or similar literature search engine.http://deepblue.lib.umich.edu/bitstream/2027.42/173834/1/12968_2022_Article_872.pd