342 research outputs found

    Predicting Big Bang Deuterium

    Get PDF
    We present new upper and lower bounds to the primordial abundances of deuterium and helium-3 based on observational data from the solar system and the interstellar medium. Independent of any model for the primordial production of the elements we find (at the 95\% C.L.): 1.5×10−5≤(D/H)P≤10.0×10−51.5 \times 10^{-5} \le (D/H)_P \le 10.0 \times 10^{-5} and (3He/H)P≤2.6×10−5(^3He/H)_P \le 2.6\times 10^{-5}. When combined with the predictions of standard big bang nucleosynthesis, these constraints lead to a 95\% C.L. bound on the primordial abundance of deuterium: (D/H)best=(3.5−1.8+2.7)×10−5(D/H)_{best} = (3.5^{+2.7}_{-1.8})\times 10^{-5}. Measurements of deuterium absorption in the spectra of high redshift QSOs will directly test this prediction. The implications of this prediction for the primordial abundances of helium-4 and lithium-7 are discussed, as well as those for the universal density of baryons.Comment: Revised version of paper to reflect comments of the referee and reply to suggestions of Copi, Schramm, and Turner regarding the overall analysis and treatment of chemical evolution of D and He-3. Best-fit D/H abundance changes from (2.3 + 3.0 - 1.0)x10^{-5} to (3.5 +2.7 - 1.8) x10^{-5}. See also hep-ph/950531

    BBN For Pedestrians

    Full text link
    The simplest, `standard' model of Big Bang Nucleosynthesis (SBBN) assumes three light neutrinos (N_nu = 3) and no significant electron neutrino asymmetry, leaving only one adjustable parameter: the baryon to photon ratio eta. The primordial abundance of any one nuclide can, therefore, be used to measure the baryon abundance and the value derived from the observationally inferred primordial abundance of deuterium closely matches that from current, non-BBN data, primarily from the WMAP survey. However, using this same estimate there is a tension between the SBBN-predicted 4He and 7Li abundances and their current, observationally inferred primordial abundances, suggesting that N_nu may differ from the standard model value of three and/or that there may be a non-zero neutral lepton asymmetry (or, that systematic errors in the abundance determinations have been underestimated or overlooked). The differences are not large and the allowed ranges of the BBN parameters permitted by the data are quite small. Within these ranges, the BBN-predicted abundances of D, 3He, 4He, and 7Li are very smooth, monotonic functions of eta, N_nu, and the lepton asymmetry. It is possible to describe the dependencies of these abundances (or powers of them) upon the three parameters by simple, linear fits which, over their ranges of applicability, are accurate to a few percent or better. The fits presented here have not been maximized for their accuracy but, for their simplicity. To identify the ranges of applicability and relative accuracies, they are compared to detailed BBN calculations; their utility is illustrated with several examples. Given the tension within BBN, these fits should prove useful in facilitating studies of the viability of proposals for non-standard physics and cosmology, prior to undertaking detailed BBN calculations.Comment: Submitted to a Focus Issue on Neutrino Physics in New Journal of Physics (www.njp.org

    Neutrinos And Big Bang Nucleosynthesis

    Full text link
    The early universe provides a unique laboratory for probing the frontiers of particle physics in general and neutrino physics in particular. The primordial abundances of the relic nuclei produced during the first few minutes of the evolution of the Universe depend on the electron neutrinos through the charged-current weak interactions among neutrons and protons (and electrons and positrons and neutrinos), and on all flavors of neutrinos through their contributions to the total energy density which regulates the universal expansion rate. The latter contribution also plays a role in determining the spectrum of the temperature fluctuations imprinted on the Cosmic Background Radiation (CBR) some 400 thousand years later. Using deuterium as a baryometer and helium-4 as a chronometer, the predictions of BBN and the CBR are compared to observations. The successes of, as well as challenges to the standard models of particle physics and cosmology are identified. While systematic uncertainties may be the source of some of the current tensions, it could be that the data are pointing the way to new physics. In particular, BBN and the CBR are used to address the questions of whether or not the relic neutrinos were fully populated in the early universe and, to limit the magnitude of any lepton asymmetry which may be concealed in the neutrinos.Comment: Accepted for publication in the Proceedings of Nobel Symposium 129, "Neutrino Physics"; to appear in Physics Scripta, eds., L Bergstrom, O. Botner, P. Carlson, P. O. Hulth, and T. Ohlsso

    The Primordial Abundance of He4: An Update

    Get PDF
    We include new data in an updated analysis of helium in low metallicity extragalactic HII regions with the goal of deriving the primordial abundance of He4 (Y_P). We show that the new observations of Izotov et al (ITL) are consistent with previous data. However they should not be taken in isolation to determine (Y_P) due to the lack of sufficiently low metallicity points. We use the extant data in a semi-empirical approach to bounding the size of possible systematic uncertainties in the determination of (Y_P). Our best estimate for the primordial abundance of He4 assuming a linear relation between He4 and O/H is Y_P = 0.230 \pm 0.003 (stat) based on the subset of HII regions with the lowest metallicity; for our full data set we find Y_P = 0.234 \pm 0.002 (stat). Both values are entirely consistent with our previous results. We discuss the implications of these values for standard big bang nucleosynthesis (SBBN), particularly in the context of recent measurements of deuterium in high redshift, low metallicity QSO absorption-line systems.Comment: 26 pages, latex, 6 ps figure

    BBN and the Primordial Abundances

    Full text link
    The relic abundances of the light elements synthesized during the first few minutes of the evolution of the Universe provide unique probes of cosmology and the building blocks for stellar and galactic chemical evolution, while also enabling constraints on the baryon (nucleon) density and on models of particle physics beyond the standard model. Recent WMAP analyses of the CBR temperature fluctuation spectrum, combined with other, relevant, observational data, has yielded very tight constraints on the baryon density, permitting a detailed, quantitative confrontation of the predictions of Big Bang Nucleosynthesis with the post-BBN abundances inferred from observational data. The current status of this comparison is presented, with an emphasis on the challenges to astronomy, astrophysics, particle physics, and cosmology it identifies.Comment: To appear in the Proceedings of the ESO/Arcetri Workshop on "Chemical Abundances and Mixing in Stars in the Milky Way and its Satellites", eds., L. Pasquini and S. Randich (Springer-Verlag Series, "ESO Astrophysics Symposia"

    Big Bang Nucleosynthesis in Crisis?

    Get PDF
    A new evaluation of the constraint on the number of light neutrino species (N_nu) from big bang nucleosynthesis suggests a discrepancy between the predicted light element abundances and those inferred from observations, unless the inferred primordial 4He abundance has been underestimated by 0.014 +/- 0.004 (1 sigma) or less than 10% (95%C.L.) of 3He survives stellar processing. With the quoted systematic errors in the observed abundances and a conservative chemical evolution parameterization, the best fit to the combined data is N_nu = 2.1 +/- 0.3 (1 sigma) and the upper limit is N_nu < 2.6 (95% C.L.). The data are inconsistent with the Standard Model (N_nu = 3) at the 98.6% C.L.Comment: To be published in Phys. Rev. Lett. Revised version to reflect referee comments and criticisms by Copi, Schramm, and Turner of robustness of D/He-3 analysis. Small quantitative changes but qualitative conclusions unchanged. Question mark added to title. Entire ps file available at ftp://upenn5.hep.upenn.edu/pub/hata/papers/bbn.ps.Z See also astro-ph/941208

    The Cosmological Evolution of the Average Mass Per Baryon

    Get PDF
    Subsequent to the early Universe quark-hadron transition the universal baryon number is carried by nucleons: neutrons and protons. The total number of nucleons is preserved as the Universe expands, but as it cools lighter protons are favored over heavier neutrons reducing the average mass per baryon. During primordial nucleosynthesis free nucleons are transformed into bound nuclides, primarily helium, and the nuclear binding energies are radiated away, further reducing the average mass per baryon. In particular, the reduction in the average mass per baryon resulting from Big Bang Nucleosynthesis (BBN) modifies the numerical factor relating the baryon (nucleon) mass and number densities. Here the average mass per baryon, m_B, is tracked from the early Universe to the present. The result is used to relate the present ratio of baryons to photons (by number) to the present baryon mass density at a level of accuracy commensurate with that of recent cosmological data, as well as to estimate the energy released during post-BBN stellar nucleosynthesis.Comment: 5 pages; no figures; updated references; final version published in JCAP, 10 (2006) 01

    Effect of Finite Mass on Primordial Nucleosynthesis

    Full text link
    We have calculated the small effect of finite nucleon mass on the weak-interaction rates that interconvert protons and neutrons in the early Universe. We have modified the standard code for primordial nucleosynthesis to include these corrections and find a small, systematic increase in the 4He yield, δY/Y≃(0.47−0.50)\delta Y / Y \simeq (0.47 - 0.50)% , depending slightly on the baryon-to-photon ratio. The fractional changes in the abundances of the other light elements are a few percent or less for interesting values of the baryon-to-photon ratio.Comment: 15 pages, 8 figures, uses psfig.st

    Ribbons on the CBR Sky: A Powerful Test of a Baryon Symmetric Universe

    Full text link
    If the Universe consists of domains of matter and antimatter, annihilations at domain interfaces leave a distinctive imprint on the Cosmic Background Radiation (CBR) sky. The signature is anisotropies in the form of long, thin ribbons of width θW∼0.1∘\theta_W\sim 0.1^\circ, separated by angle θL≃1∘(L/100h−1Mpc)\theta_L\simeq 1^\circ(L/100h^{-1}{Mpc}) where L is the characteristic domain size, and y-distortion parameter y≈10−6y \approx 10^{-6}. Such a pattern could potentially be detected by the high-resolution CBR anisotropy experiments planned for the next decade, and such experiments may finally settle the question of whether or not our Hubble volume is baryon symmetric.Comment: LaTeX, 10 pages, 4 figures in epsf. Revised version corrects a couple of relevant mistake
    • …
    corecore