146 research outputs found

    Circulating matrix metalloproteinases are associated with arterial stiffness in patients with type 1 diabetes: pooled analysis of three cohort studies

    Get PDF
    BACKGROUND: Altered regulation of extracellular matrix (ECM) composition by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) may contribute to arterial stiffening. We investigated associations between circulating MMP-1, -2, -3, -9, -10 and TIMP-1, and carotid-femoral pulse wave velocity (cfPWV) and pulse pressure (PP), as markers of arterial stiffness in type 1 diabetic patients. METHODS: Individuals with type 1 diabetes from three different cohorts were included in this study: EURODIAB Prospective Complications study (n = 509), LEACE (n = 370) and PROFIL (n = 638). Linear regression analyses were used to investigate cross-sectional associations between circulating levels of MMP-1, -2, -3, -9, -10, and TIMP-1 and cfPWV (n = 614) as well as office PP (n = 1517). Data on 24-h brachial and 24-h central PP were available in 638 individuals from PROFIL. Analyses were adjusted for age, sex, duration of diabetes, HbA1c, mean arterial pressure (MAP), and eGFR, and additionally for other cardiovascular risk factors and presence of vascular complications. RESULTS: After adjustment for potential confounders and presence of vascular complications, circulating MMP-3 was associated with cfPWV [β per 1 SD higher lnMMP3 0.29 m/s (0.02; 0.55)]. In addition, brachial and central 24-h PP measurements in PROFIL were significantly associated with MMP-2 [(1.40 (0.47:2.33) and 1.43 (0.63:2.23)]. Pooled data analysis showed significant associations of circulating levels of MMP-1 and MMP-2 with office PP [β per 1 SD higher lnMMP-1 and lnMMP-2 = − 0.83 mmHg (95% CI − 1.50; − 0.16) and = 1.33 mmHg (0.55; 2.10), respectively]. CONCLUSIONS: MMPs-1, -2, and -3 are independently associated with markers of arterial stiffening in patients with type 1 diabetes and may become therapeutic targets

    Serum homocysteine is weakly associated with von Willebrand factor and soluble vascular cell adhesion molecule 1, but not with C-reactive protein in type 2 diabetic and nondiabetic subjects: the Hoorn Study.

    Get PDF
    Background: Hyperhomocysteinaemia may constitute an independent risk factor for cardiovascular disease, but it is still unclear by which pathophysiological mechanisms homocysteine (tHcy) may promote atherothrombosis. The aim of this study was firstly to examine whether tHcy is associated with endothelial dysfunction, increased adherence of leukocytes, and/or chronic low-grade inflammation, as estimated from plasma levels of von Willebrand factor (vWf), soluble vascular cell adhesion molecule 1 (sVCAM-1) and C-reactive protein (CRP), respectively. Secondly we investigated whether the presence of type 2 diabetes modifies these associations. Materials and Methods: Six hundred and ten subjects of a general population of middle-aged and elderly subjects, 170 of whom had type 2 diabetes, participated in this cross-sectional study. Linear regression analyses were used to study whether tHcy was associated with vWf, sVCAM-1 and CRP, and whether the presence of diabetes modified these associations. Results: After adjustment for confounders, tHcy was significantly but weakly associated with vWf (β=0¡15, P=0¡05) and sVCAM-1 (β=0¡082, P=0¡04). tHcy was not significantly associated with CRP (β=0¡02, P=0¡91). The presence of diabetes did not significantly modify these associations. Conclusions: This study provides evidence that tHcy is, at most, weakly associated with endothelial dysfunction as estimated from plasma vWf, and with leukocyte adhesion as estimated from plasma sVCAM-1. tHcy was not significantly associated with chronic low-grade inflammation as estimated from plasma CRP. Our data thus suggest that the link between tHcy and atherothrombosis cannot be explained by associations of tHcy with vWf, sVCAM-1 or CRP

    Circulating N-Acetylaspartate does not track brain NAA concentrations, cognitive function or features of small vessel disease in humans

    Get PDF
    N-acetylaspartate (NAA) is the second most abundant metabolite in the human brain; although it is assumed to be a proxy for a neuronal marker, its function is not fully elucidated. NAA is also detectable in plasma, but its relation to cerebral NAA levels, cognitive performance, or features of cerebral disease has not been investigated. To study whether circulating NAA tracks cerebral NAA levels, and whether circulating NAA correlates with cognitive function and features of cerebral small vessel disease (SVD). Two datasets were analyzed. In dataset 1, structural MRI was acquired in 533 subjects to assess four features of cerebral SVD. Cognitive function was evaluated with standardized test scores (N = 824). In dataset 2, brain H-1-MRS from the occipital region was acquired (N = 49). In all subjects, fasting circulating NAA was measured with mass spectrometry. Dataset 1: in univariate and adjusted for confounders models, we found no correlation between circulating NAA and the examined features of cerebral SVD. In univariate analysis, circulating NAA levels were associated inversely with the speed in information processing and the executive function score, however these associations were lost after accounting for confounders. In line with the negative findings of dataset 1, in dataset 2 there was no correlation between circulating and central NAA or total NAA levels. This study indicates that circulating NAA levels do not reflect central (occipital) NAA levels, cognitive function, or cerebral small vessel disease in man

    Progression of conventional cardiovascular risk factors and vascular disease risk in individuals: insights from the PROG-IMT consortium

    Get PDF
    Aims Averaged measurements, but not the progression based on multiple assessments of carotid intima-media thickness, (cIMT) are predictive of cardiovascular disease (CVD) events in individuals. Whether this is true for conventional risk factors is unclear. Methods and results An individual participant meta-analysis was used to associate the annualised progression of systolic blood pressure, total cholesterol, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol with future cardiovascular disease risk in 13 prospective cohort studies of the PROG-IMT collaboration (n = 34,072). Follow-up data included information on a combined cardiovascular disease endpoint of myocardial infarction, stroke, or vascular death. In secondary analyses, annualised progression was replaced with average. Log hazard ratios per standard deviation difference were pooled across studies by a random effects meta-analysis. In primary analysis, the annualised progression of total cholesterol was marginally related to a higher cardiovascular disease risk (hazard ratio (HR) 1.04, 95% confidence interval (CI) 1.00 to 1.07). The annualised progression of systolic blood pressure, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol was not associated with future cardiovascular disease risk. In secondary analysis, average systolic blood pressure (HR 1.20 95% CI 1.11 to 1.29) and low-density lipoprotein cholesterol (HR 1.09, 95% CI 1.02 to 1.16) were related to a greater, while high-density lipoprotein cholesterol (HR 0.92, 95% CI 0.88 to 0.97) was related to a lower risk of future cardiovascular disease events. Conclusion Averaged measurements of systolic blood pressure, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol displayed significant linear relationships with the risk of future cardiovascular disease events. However, there was no clear association between the annualised progression of these conventional risk factors in individuals with the risk of future clinical endpoints

    Autosomal genetic variation is associated with DNA methylation in regions variably escaping X-chromosome inactivation

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Raw data were submitted to the European Genome-phenome Archive (EGA) under accession EGAS00001001077.X-chromosome inactivation (XCI), i.e., the inactivation of one of the female X chromosomes, restores equal expression of X-chromosomal genes between females and males. However, ~10% of genes show variable degrees of escape from XCI between females, although little is known about the causes of variable XCI. Using a discovery data-set of 1867 females and 1398 males and a replication sample of 3351 females, we show that genetic variation at three autosomal loci is associated with female-specific changes in X-chromosome methylation. Through cis-eQTL expression analysis, we map these loci to the genes SMCHD1/METTL4, TRIM6/HBG2, and ZSCAN9. Low-expression alleles of the loci are predominantly associated with mild hypomethylation of CpG islands near genes known to variably escape XCI, implicating the autosomal genes in variable XCI. Together, these results suggest a genetic basis for variable escape from XCI and highlight the potential of a population genomics approach to identify genes involved in XCI.This research was financially supported by several institutions: BBMRI-NL, a Research Infrastructure financed by the Dutch government (NWO, numbers 184.021.007 and 184.033.111); the UK Medical Research Council; Wellcome (www.wellcome.ac.uk; [grant number 102215/2/13/2 to ALSPAC]); the University of Bristol to ALSPAC; the UK Economic and Social Research Council (www.esrc.ac.uk; [ES/N000498/1] to CR); the UK Medical Research Council (www.mrc.ac.uk; grant numbers [MC_UU_12013/1, MC_UU_12013/2 to JLM, CR]); the Helmholtz Zentrum München – German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria; the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ; the Wellcome Trust, Medical Research Council, European Union (EU), and the National Institute for Health Research (NIHR)- funded BioResource, Clinical Research Facility, and Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London
    • …
    corecore