177 research outputs found

    Electroencephalogram of Healthy Horses During Inhaled Anesthesia.

    Get PDF
    BackgroundPrevious study of the diagnostic validity of electroencephalography (EEG) to detect abnormalities in equine cerebral cortical function relied on the administration of various drugs for sedation, induction, and maintenance of general anesthesia but used identical criteria to interpret recordings.ObjectivesTo determine the effects of 2 inhalation anesthetics on the EEG of healthy horses.AnimalsSix healthy horses.MethodsProspective study. After the sole administration of one of either isoflurane or halothane at 1.2, 1.4, and 1.6 times the minimum alveolar concentration, EEG was recorded during controlled ventilation, spontaneous ventilation, and nerve stimulation.ResultsBurst suppression was observed with isoflurane, along with EEG events that resembled epileptiform discharges. Halothane results were variable between horses, with epileptiform-like discharges and bursts of theta, alpha, and beta recorded intermittently. One horse died and 2 were euthanized as the result of anesthesia-related complications.Conclusions and clinical importanceThe results of this study indicate that the effects of halothane and isoflurane on EEG activity in the normal horse can be quite variable, even when used in the absence of other drugs. It is recommended that equine EEG be performed without the use of these inhalation anesthetics and that general anesthesia be induced and maintained by other contemporary means

    Qualitative and Quantitative Characteristics of the Electroencephalogram in Normal Horses during Administration of Inhaled Anesthesia.

    Get PDF
    BackgroundThe effects of anesthesia on the equine electroencephalogram (EEG) after administration of various drugs for sedation, induction, and maintenance are known, but not that the effect of inhaled anesthetics alone for EEG recording.ObjectiveTo determine the effects of isoflurane and halothane, administered as single agents at multiple levels, on the EEG and quantitative EEG (qEEG) of normal horses.AnimalsSix healthy horses.MethodsProspective study. Digital EEG with video and quantitative EEG (qEEG) were recorded after the administration of one of the 2 anesthetics, isoflurane or halothane, at 3 alveolar doses (1.2, 1.4 and 1.6 MAC). Segments of EEG during controlled ventilation (CV), spontaneous ventilation (SV), and with peroneal nerve stimulation (ST) at each MAC multiple for each anesthetic were selected, analyzed, and compared. Multiple non-EEG measurements were also recorded.ResultsSpecific raw EEG findings were indicative of changes in the depth of anesthesia. However, there was considerable variability in EEG between horses at identical MAC multiples/conditions and within individual horses over segments of a given epoch. Statistical significance for qEEG variables differed between anesthetics with bispectral index (BIS) CV MAC and 95% spectral edge frequency (SEF95) SV MAC differences in isoflurane only and median frequency (MED) differences in SV MAC with halothane only.Conclusions and clinical importanceUnprocessed EEG features (background and transients) appear to be beneficial for monitoring the depth of a particular anesthetic, but offer little advantage over the use of changes in mean arterial pressure for this purpose

    Metabolism during anaesthesia and recovery in colic and healthy horses: a microdialysis study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Muscle metabolism in horses has been studied mainly by analysis of substances in blood or plasma and muscle biopsy specimens. By using microdialysis, real-time monitoring of the metabolic events in local tissue with a minimum of trauma is possible. There is limited information about muscle metabolism in the early recovery period after anaesthesia in horses and especially in the colic horse. The aims were to evaluate the microdialysis technique as a complement to plasma analysis and to study the concentration changes in lactate, pyruvate, glucose, glycerol, and urea during anaesthesia and in the recovery period in colic horses undergoing abdominal surgery and in healthy horses not subjected to surgery.</p> <p>Methods</p> <p>Ten healthy university-owned horses given anaesthesia alone and ten client-owned colic horses subjected to emergency abdominal surgery were anaesthetised for a mean (range) of 230 min (193–273) and 208 min (145–300) respectively. Venous blood samples were taken before anaesthesia. Venous blood sampling and microdialysis in the gluteal muscle were performed during anaesthesia and until 24 h after anaesthesia. Temporal changes and differences between groups were analysed with an ANOVA for repeated measures followed by Tukey Post Hoc test or Planned Comparisons.</p> <p>Results</p> <p>Lactate, glucose and urea, in both dialysate and plasma, were higher in the colic horses than in the healthy horses for several hours after recovery to standing. In the colic horses, lactate, glucose, and urea in dialysate, and lactate in plasma increased during the attempts to stand. The lactate-to-pyruvate ratio was initially high in sampled colic horses but decreased over time. In the colic horses, dialysate glycerol concentrations varied considerably whereas in the healthy horses, dialysate glycerol was elevated during anaesthesia but decreased after standing. In both groups, lactate concentration was higher in dialysate than in plasma. The correspondence between dialysate and plasma concentrations of glucose, urea and glycerol varied.</p> <p>Conclusion</p> <p>Microdialysis proved to be suitable in the clinical setting for monitoring of the metabolic events during anaesthesia and recovery. It was possible with this technique to show greater muscle metabolic alterations in the colic horses compared to the healthy horses in response to regaining the standing position.</p

    Analgesic management of an eight-year-old Springer Spaniel after amputation of a thoracic limb

    Get PDF
    Analgesic agents were administered perioperatively to an eight-year-old Springer Spaniel undergoing amputation of its right thoracic limb. The amputation was carried out due to a painful, infiltrative and poorly differentiated sarcoma involving the nerves of the brachial plexus. A combination of pre-emptive and multimodal perioperative analgesic strategies was used; including intravenous (IV) infusions of fentanyl, morphine, lidocaine and ketamine

    Metabolism before, during and after anaesthesia in colic and healthy horses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many colic horses are compromised due to the disease state and from hours of starvation and sometimes long trailer rides. This could influence their muscle energy reserves and affect the horses' ability to recover. The principal aim was to follow metabolic parameter before, during, and up to 7 days after anaesthesia in healthy horses and in horses undergoing abdominal surgery due to colic.</p> <p>Methods</p> <p>20 healthy horses given anaesthesia alone and 20 colic horses subjected to emergency abdominal surgery were anaesthetised for a mean of 228 minutes and 183 minutes respectively. Blood for analysis of haematology, electrolytes, cortisol, creatine kinase (CK), free fatty acids (FFA), glycerol, glucose and lactate was sampled before, during, and up to 7 days after anaesthesia. Arterial and venous blood gases were obtained before, during and up to 8 hours after recovery. Gluteal muscle biopsy specimens for biochemical analysis of muscle metabolites were obtained at start and end of anaesthesia and 1 h and 1 day after recovery.</p> <p>Results</p> <p>Plasma cortisol, FFA, glycerol, glucose, lactate and CK were elevated and serum phosphate and potassium were lower in colic horses before anaesthesia. Muscle adenosine triphosphate (ATP) content was low in several colic horses. Anaesthesia and surgery resulted in a decrease in plasma FFA and glycerol in colic horses whereas levels increased in healthy horses. During anaesthesia muscle and plasma lactate and plasma phosphate increased in both groups. In the colic horses plasma lactate increased further after recovery. Plasma FFA and glycerol increased 8 h after standing in the colic horses. In both groups, plasma concentrations of CK increased and serum phosphate decreased post-anaesthesia. On Day 7 most parameters were not different between groups. Colic horses lost on average 8% of their initial weight. Eleven colic horses completed the study.</p> <p>Conclusion</p> <p>Colic horses entered anaesthesia with altered metabolism and in a negative oxygen balance. Muscle oxygenation was insufficient during anaesthesia in both groups, although to a lesser extent in the healthy horses. The post-anaesthetic period was associated with increased lipolysis and weight loss in the colic horses, indicating a negative energy balance during the first week post-operatively.</p

    Qualitative and Quantitative Characteristics of the Electroencephalogram in Normal Horses during Administration of Inhaled Anesthesia

    No full text
    BACKGROUND: The effects of anesthesia on the equine electroencephalogram (EEG) after administration of various drugs for sedation, induction, and maintenance are known, but not that the effect of inhaled anesthetics alone for EEG recording. OBJECTIVE: To determine the effects of isoflurane and halothane, administered as single agents at multiple levels, on the EEG and quantitative EEG (qEEG) of normal horses. ANIMALS: Six healthy horses. METHODS: Prospective study. Digital EEG with video and quantitative EEG (qEEG) were recorded after the administration of one of the 2 anesthetics, isoflurane or halothane, at 3 alveolar doses (1.2, 1.4 and 1.6 MAC). Segments of EEG during controlled ventilation (CV), spontaneous ventilation (SV), and with peroneal nerve stimulation (ST) at each MAC multiple for each anesthetic were selected, analyzed, and compared. Multiple non‐EEG measurements were also recorded. RESULTS: Specific raw EEG findings were indicative of changes in the depth of anesthesia. However, there was considerable variability in EEG between horses at identical MAC multiples/conditions and within individual horses over segments of a given epoch. Statistical significance for qEEG variables differed between anesthetics with bispectral index (BIS) CV MAC and 95% spectral edge frequency (SEF95) SV MAC differences in isoflurane only and median frequency (MED) differences in SV MAC with halothane only. CONCLUSIONS AND CLINICAL IMPORTANCE: Unprocessed EEG features (background and transients) appear to be beneficial for monitoring the depth of a particular anesthetic, but offer little advantage over the use of changes in mean arterial pressure for this purpose
    corecore