74 research outputs found
Growth Techniques for Bulk ZnO and Related Compounds
ZnO bulk crystals can be grown by several methods. 1) From the gas phase,
usually by chemical vapor transport. Such CVT crystals may have high chemical
purity, as the growth is performed without contact to foreign material. The
crystallographic quality is often very high (free growth). 2) From melt fluxes
such as alkaline hydroxides or other oxides (MoO3, V2O5, P2O5, PbO) and salts
(PbCl2, PbF2). Melt fluxes offer the possibility to grow bulk ZnO under mild
conditions (<1000 deg. C, atmospheric pressure), but the crystals always
contain traces of solvent. The limited purity is a severe drawback, especially
for electronic applications. 3) From hydrothermal fluxes, usually alkaline
(KOH, LiOH) aqueous solutions beyond the critical point. Due to the amphoteric
character of ZnO, the supercritical bases can dissolve it up to several per
cent of mass. The technical requirements for this growth technology are
generally hard, but this did not hinder its development as the basic technique
for the growth of {\alpha}-quartz, and meanwhile also of zinc oxide, during the
last decades. 4) From pure melts, which is the preferred technology for
numerous substances applied whenever possible, e.g. for the growth of silicon,
gallium arsenide, sapphire, YAG. The benefits of melt growth are (i) the high
growth rate and (ii) the absence of solvent related impurities. In the case of
ZnO, however, it is difficult to find container materials that are compatible
from the thermal (fusion point Tf = 1975 deg. C) and chemical (required oxygen
partial pressure) point of view. Either cold crucible (skull melting) or
Bridgman (with reactive atmosphere) techniques were shown to overcome the
problems that are inherent to melt growth. Reactive atmospheres allow to grow
not only bulk ZnO single crystals, but also other TCOs such as {\beta}-Ga2O3
and In2O3.Comment: 10 pages, 7 figures, talk on MRS Fall 2011 Bosto
Recommended from our members
Numerical Modeling of Heat Transfer and Thermal Stress at the Czochralski Growth of Neodymium Scandate Single Crystals
The Czochralski growth of NdScO3 single crystals along the [110]-direction is numerically analyzed with the focus on the influence of the optical thickness on the shape of the crystal–melt interface and on the generation of thermal stresses. Due to lack of data, the optical thickness (i.e., the absorption coefficient) is varied over the entire interval between optically thin and thick. While the thermal calculation in the entire furnace is treated as axisymmetric, the stress calculation of the crystal is done three-dimensionally in order to meet the spatial anisotropy of thermal expansion and elastic coefficients. The numerically obtained values of the deflection of the crystal/melt interface meet the experimental ones for absorption coefficients in the range between 40 and 200 m−1. The maximum values of the von Mises stress appear for the case of absorption coefficient between 20 and 40 m−1. Applying absorption coefficients in the range between 3 and 100 m−1 leads to local peaks of high temperature in the shoulder region and the tail region near the end of the cylindrical part
The inverse perovskite BaLiF3: single-crystal neutron diffraction and analyses of potential ion pathways
Doped barium lithium trifluoride has attracted attention as component for scintillators, luminescent materials and electrodes. With lithium and fluoride, it contains two possibly mobile species, which may account for its ionic conductivity. In this study, neutron diffraction on oxide-containing BaLiF3 single-crystals is performed at up to 636.2°C. Unfortunately, ion-migration pathways could not be mapped by modelling anharmonic ion displacement or by inspecting the scattering-length density that was reconstructed via maximum-entropy methods. However, analyses of the topology and bond-valence site energies derived from the high-temperature structure reveal that the anions can migrate roughly along the edges of the LiF6 coordination octahedra with an estimated migration barrier of ∼0.64 eV (if a vacancy permits), whereas the lithium ions are confined to their crystallographic positions. This finding is not only valid for the title compound but for ion migration in all perovskites with Goldschmidt tolerance factors near unity
Evaluation and thermodynamic optimization of phase diagram of lithium niobate tantalate solid solutions
The phase diagram of the lithium niobate and lithium tantalate solid
solutions was investigated using experimental data from differential thermal
analysis (DTA) and crystal growth. We used XRF analysis to determine the
elemental composition of crystals. Based on the Neumann-Kopp rule, essential
data of end members lithium niobate (LN) and lithium tantalate (LT) was
created. The heats of fusion of end members given by DTA measurements of LN
(103 kJ/mol at 1531 K) and LT (289 kJ/mol at 1913 K) were given as input
parameters to generate the data. This data served as the basis for calculating
a phase diagram for LN and LT solid solutions. Finally, based on the
experimental data and thermodynamic solution model, the phase diagram was
optimized in the Calphad Factsage module. We also generated thermodynamic
parameters for Gibb's excess energy of the solid solution. A plot of
segregation coefficient as a function of Ta concentration was derived from the
phase diagram
Recommended from our members
REScO3 Substrates—Purveyors of Strain Engineering
The thermodynamic and crystallographic background for the development of substrate crystals that are suitable for the epitaxial deposition of biaxially strained functional perovskite layers is reviewed. In such strained layers the elastic energy delivers an additional contribution to the Gibbs free energy, which allows the tuning of physical properties and phase transition temperatures to desired values. For some oxide systems metastable phases can even be accessed. Rare-earth scandates, REScO3, are well suited as substrate crystals because they combine mechanical and chemical stability in the epitaxy process with an adjustable range of pseudo-cubic lattice parameters in the 3.95 to 4.02 Å range. To further tune the lattice parameters, chemical substitution for the RE or Sc is possible. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei
- …