20 research outputs found

    Specific Binding of Alzheimer’s Aβ Peptide Fibrils to Single Walled Carbon Nanotubes

    Get PDF
    Amyloids constitute a class of protein and protein fragments believed to be involved in the pathologies associated with Alzheimer’s, Parkinson’s and Creutzfeldt‐Jakob diseases. These proteins can self‐assemble into unique fibrillar structures that are resistant to normal protein degradation. Interesting recent developments in the study of amyloid fibrils demonstrate that they bind carbon allotropes. In this study, using single‐walled carbon nanotube field-effect transistors (SWCNT‐FETs), we show that the fibrillar form of Alzheimer’s amyloid β (1‐40) and (1‐42) peptides specifically bind non‐functionalized SWCNT in a saturable manner. Both peptides exhibited near identical binding curves with half‐maximal binding concentrations of approximately 12 µg/ml. Binding of the peptides to SWCNTs was diminished by including dimethyl sulphoxide (DMSO) at concentrations that inhibits fibril formation. Lastly, a monoclonal antibody (BAM‐10), which binds to the N‐terminal region of Alzheimer’s amyloid fibrils, recognizes the amyloid peptides adhering to SWCNTs in the absence of DMSO, but not in the presence of 75% DMSO. Taken together, these results suggest that the fibrillar form of the Alzheimer’s amyloid peptides are specifically binding to SWCNTs

    Comparison of Radioimmuno and Carbon Nanotube Field-Effect Transistor Assays for Measuring Insulin-Like Growth Factor-1 in a Preclinical Model of Human Breast Cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To realize the promise of personalized medicine, diagnostic instruments used for detecting and measuring biomarkers must become smaller, faster and less expensive. Although most techniques used currently to detect biomarkers are sensitive and specific, many suffer from several disadvantages including their complexity, high cost and long turnaround time. One strategy to overcome these problems is to exploit carbon nanotube (CNT) based biosensors, which are sensitive, use inexpensive disposable components and can be easily adapted to current assay protocols. In this study we investigated the applicability of using a CNT field-effect transistor (CNT-FET) as a diagnostic instrument for measuring cancer biomarkers in serum using a mouse model of <it>Breast Cancer Susceptibility 1</it>-related breast cancer. Insulin like growth factor-1 (IGF-1) was chosen because it is highly relevant in breast cancer and because measuring serum IGF-1 levels by conventional methods is complicated due to specific IGF-1 serum binding proteins.</p> <p>Findings</p> <p>Our results show that there is good correlation between the two platforms with respect to detecting serum IGF-1. In fact, the CNT-FETs required only one antibody, gave real-time results and required approximately 100-fold less mouse serum than the radioimmunoassay.</p> <p>Conclusions</p> <p>Both IGF-1 radioimmuno and CNT-FET assays gave comparable results. Indeed, the CNT-FET assay was simpler and faster than the radioimmunoassay. Additionally, the low serum sample required by CNT-FETs can be especially advantageous for studies constricted by limited amount of human clinical samples and for mouse studies, since animals often need to be sacrificed to obtain enough serum for biomarker evaluation.</p

    Targeting Antibodies to Carbon Nanotube Field Effect Transistors by Pyrene Hydrazide Modification of Heavy Chain Carbohydrates

    Get PDF
    Many carbon nanotube field-effect transistor (CNT-FET) studies have used immobilized antibodies as the ligand binding moiety. However, antibodies are not optimal for CNT-FET detection due to their large size and charge. Their size can prevent ligands from reaching within the Debye length of the CNTs and a layer of charged antibodies on the circuits can drown out any ligand signal. In an attempt to minimize the antibody footprint on CNT-FETs, we examined whether pyrene hydrazide modification of antibody carbohydrates could reduce the concentration required to functionalize CNT circuits. The carbohydrates are almost exclusively on the antibody Fc region and this site-specific modification could mediate uniform antibody orientation on the CNTs. We compared the hydrazide modification of anti-E. coli O157:H7 polyclonal antibodies to pyrenebutanoic acid succinimidyl ester-coated CNTs and carbodiimide-mediated antibody CNT attachment. Our results show that the pyrene hydrazide modification was superior to those methods with respect to bacteria detection and less than 1 nM labeled antibody was required to functionalize the circuits

    Type 1 plasminogen activator inhibitor binds to fibrin via vitronectin

    Get PDF
    Type 1 plasminogen activator inhibitor (PAI-1), the primary inhibitor of tissue-type plasminogen activator (t-PA), circulates as a complex with the abundant plasma glycoprotein, vitronectin. This interaction stabilizes the inhibitor in its active conformation. In this report, the effects of vitronectin on the interactions of PAI-1 with fibrin clots were studied. Confocal microscopic imaging of platelet-poor plasma clots reveals that essentially all fibrin-associated PAI-1 colocalizes with fibrin-bound vitronectin. Moreover, formation of platelet-poor plasma clots in the presence of polyclonal antibodies specific for vitronectin attenuated the inhibitory effects of PAI-1 on t-PA-mediated fibrinolysis. Addition of vitronectin during clot formation markedly potentiates PAI-1-mediated inhibition of lysis of 125I-labeled fibrin clots by t-PA. This effect is dependent on direct binding interactions of vitronectin with fibrin. There is no significant effect of fibrin-associated vitronectin on fibrinolysis in the absence of PAI-1. The binding of PAI-1 to fibrin clots formed in the absence of vitronectin was characterized by a low affinity (Kd ~ 3.5 μM) and rapid loss of PAI-1 inhibitory activity over time. In contrast, a high affinity and stabilization of PAI-1 activity characterized the cooperative binding of PAI- 1 to fibrin formed in the presence of vitronectin. These findings indicate that plasma PAI-1-vitronectin complexes can be localized to the surface of fibrin clots; by this localization, they may modulate fibrinolysis and clot reorganization

    Mitosis in circulating tumor cells stratifies highly aggressive breast carcinomas.

    Get PDF
    BACKGROUND: Enumeration of circulating tumor cells (CTCs) isolated from the peripheral blood of breast cancer patients holds promise as a clinically relevant, minimally invasive diagnostic test. However, CTC utility has been limited as a prognostic indicator of survival by the inability to stratify patients beyond general enumeration. In comparison, histological biopsy examinations remain the standard method for confirming malignancy and grading malignant cells, allowing for cancer identification and then assessing patient cohorts for prognostic and predictive value. Typically, CTC identification relies on immunofluorescent staining assessed as absent/present, which is somewhat subjective and limited in its ability to characterize these cells. In contrast, the physical features used in histological cytology comprise the gold standard method used to identify and preliminarily characterize the cancer cells. Here, we superimpose the methods, cytologically subtyping CTCs labeled with immunohistochemical fluorescence stains to improve their prognostic value in relation to survival. METHODS: In this single-blind prospective pilot study, we tracked 36 patients with late-stage breast cancer over 24 months to compare overall survival between simple CTC enumeration and subtyping mitotic CTCs. A power analysis (1-β = 0. 9, α = 0.05) determined that a pilot size of 30 patients was sufficient to stratify this patient cohort; 36 in total were enrolled. RESULTS: Our results confirmed that CTC number is a prognostic indicator of patient survival, with a hazard ratio 5.2, p = 0.005 (95 % CI 1.6-16.5). However, by simply subtyping the same population based on CTCs in cytological mitosis, the hazard ratio increased dramatically to 11.1, p \u3c 0.001 (95 % CI 3.1-39.7). CONCLUSIONS: Our data suggest that (1) mitotic CTCs are relativity common in aggressive late-stage breast cancer, (2) mitotic CTCs may significantly correlate with shortened overall survival, and (3) larger and more defined patient cohort studies are clearly called for based on this initial pilot study

    Evaluation of aromatic boronic acids as ligands for measuring diabetes markers on carbon nanotube field-effect transistors,”

    No full text
    Biomolecular detections performed on carbon nanotube field-effect transistors (CNT-FETs) frequently use reactive pyrenes as an anchor to tether bioactive ligands to the hydrophobic nanotubes. In this paper, we explore the possibility of directly using bioactive aromatic compounds themselves as CNT-FET ligands. This would be an efficient way to functionalize CNT-FETs since many aromatic compounds bind avidly to nanotubes, and it would also ensure that ligand-binding molecules would be brought in close proximity to the nanotubes. Using a model system consisting of pyrene, phenanthrene, naphthalene, or phenyl boronic acids immobilized on CNT-FET wafers, we show that all are able to bind glycated human serum albumin (gHSA), which is an important diabetes marker. Pyrene boronic acid proved to bind CNTs with the greatest apparent affinity as measured by gHSA impedance. Interestingly, gHSA CNT-FET signal intensity, which is proportional to amount of protein bound, remained essentially unchanged for all the boronic acids tested

    Targeting Antibodies to Carbon Nanotube Field Effect Transistors by Pyrene Hydrazide Modification of Heavy Chain Carbohydrates

    Get PDF
    Many carbon nanotube field-effect transistor (CNT-FET) studies have used immobilized antibodies as the ligand binding moiety. However, antibodies are not optimal for CNT-FET detection due to their large size and charge. Their size can prevent ligands from reaching within the Debye length of the CNTs and a layer of charged antibodies on the circuits can drown out any ligand signal. In an attempt to minimize the antibody footprint on CNT-FETs, we examined whether pyrene hydrazide modification of antibody carbohydrates could reduce the concentration required to functionalize CNT circuits. The carbohydrates are almost exclusively on the antibody Fc region and this site-specific modification could mediate uniform antibody orientation on the CNTs. We compared the hydrazide modification of anti-E. coli O157:H7 polyclonal antibodies to pyrenebutanoic acid succinimidyl ester-coated CNTs and carbodiimide-mediated antibody CNT attachment. Our results show that the pyrene hydrazide modification was superior to those methods with respect to bacteria detection and less than 1 nM labeled antibody was required to functionalize the circuits
    corecore