8,134 research outputs found

    Network recovery from massive failures under uncertain knowledge of damages

    Get PDF
    This paper addresses progressive network recovery under uncertain knowledge of damages. We formulate the problem as a mixed integer linear programming (MILP), and show that it is NP-Hard. We propose an iterative stochastic recovery algorithm (ISR) to recover the network in a progressive manner to satisfy the critical services. At each optimization step, we make a decision to repair a part of the network and gather more information iteratively, until critical services are completely restored. Three different algorithms are used to find a feasible set and determine which node to repair, namely, 1) an iterative shortest path algorithm (ISR-SRT), 2) an approximate branch and bound (ISR-BB) and 3) an iterative multi-commodity LP relaxation (ISR-MULT). Further, we have modified the state-of-the-Art iterative split and prune (ISP) algorithm to incorporate the uncertain failures. Our results show that ISR-BB and ISR- MULT outperform the state-of-the-Art 'progressive ISP' algorithm while we can configure our choice of trade-off between the execution time, number of repairs (cost) and the demand loss. We show that our recovery algorithm, on average, can reduce the total number of repairs by a factor of about 3 with respect to ISP, while satisfying all critical deman

    The Discovery of an X-ray/UV Stellar Flare from the Late-K/Early-M Dwarf LMC 335

    Get PDF
    We report the discovery of an X-ray/UV stellar flare from the source LMC 335, captured by XMM-Newton in the field of the Large Magellanic Cloud. The flare event was recorded continuously in X-ray for its first 10 hours from the precursor to the late decay phases. The observed fluxes increased by more than two orders of magnitude at its peak in X-ray and at least one in the UV as compared to quiescence. The peak 0.1-7.0 keV X-ray flux is derived from the two-temperature APEC model to be ~(8.4 +/- 0.6) x 10^-12 erg cm-2 s-1. Combining astrometric information from multiple X-ray observations in the quiescent and flare states, we identify the NIR counterpart of LMC 335 as the 2MASS source J05414534-6921512. The NIR color relations and spectroscopic parallax characterize the source as a Galactic K7-M4 dwarf at a foreground distance of (100 - 264) pc, implying a total energy output of the entire event of ~(0.4 - 2.9) x 10^35 erg. This report comprises detailed analyses of this late-K / early-M dwarf flare event that has the longest time coverage yet reported in the literature. The flare decay can be modeled with two exponential components with timescales of ~28 min and ~4 hours, with a single component decay firmly ruled out. The X-ray spectra during flare can be described by two components, a dominant high temperature component of ~40-60MK and a low temperature component of ~10MK, with a flare loop length of about 1.1-1.3 stellar radius.Comment: 35 pages, 6 figures, 5 tables, accepted for publication in Ap

    Estimating probabilities from experimental frequencies

    Full text link
    Estimating the probability distribution 'q' governing the behaviour of a certain variable by sampling its value a finite number of times most typically involves an error. Successive measurements allow the construction of a histogram, or frequency count 'f', of each of the possible outcomes. In this work, the probability that the true distribution be 'q', given that the frequency count 'f' was sampled, is studied. Such a probability may be written as a Gibbs distribution. A thermodynamic potential, which allows an easy evaluation of the mean Kullback-Leibler divergence between the true and measured distribution, is defined. For a large number of samples, the expectation value of any function of 'q' is expanded in powers of the inverse number of samples. As an example, the moments, the entropy and the mutual information are analyzed.Comment: 10 pages, 3 figures, to be published in Physical Review

    Scheme for teleportation of quantum states onto a mechanical resonator

    Full text link
    We propose an experimentally feasible scheme to teleport an unkown quantum state onto the vibrational degree of freedom of a macroscopic mirror. The quantum channel between the two parties is established by exploiting radiation pressure effects.Comment: 5 pages, 2 figures, in press on PR

    Gamma Rays from Clusters and Groups of Galaxies: Cosmic Rays versus Dark Matter

    Full text link
    Clusters of galaxies have not yet been detected at gamma-ray frequencies; however, the recently launched Fermi Gamma-ray Space Telescope, formerly known as GLAST, could provide the first detections in the near future. Clusters are expected to emit gamma rays as a result of (1) a population of high-energy primary and re-accelerated secondary cosmic rays (CR) fueled by structure formation and merger shocks, active galactic nuclei and supernovae, and (2) particle dark matter (DM) annihilation. In this paper, we ask the question of whether the Fermi telescope will be able to discriminate between the two emission processes. We present data-driven predictions for a large X-ray flux limited sample of galaxy clusters and groups. We point out that the gamma ray signals from CR and DM can be comparable. In particular, we find that poor clusters and groups are the systems predicted to have the highest DM to CR emission at gamma-ray energies. Based on detailed Fermi simulations, we study observational handles that might enable us to distinguish the two emission mechanisms, including the gamma-ray spectra, the spatial distribution of the signal and the associated multi-wavelength emissions. We also propose optimal hardness ratios, which will help to understand the nature of the gamma-ray emission. Our study indicates that gamma rays from DM annihilation with a high particle mass can be distinguished from a CR spectrum even for fairly faint sources. Discriminating a CR spectrum from a light DM particle will be instead much more difficult, and will require long observations and/or a bright source. While the gamma-ray emission from our simulated clusters is extended, determining the spatial distribution with Fermi will be a challenging task requiring an optimal control of the backgrounds.Comment: revised to match resubmitted version, 35 pages, 16 figures: results unchanged, some discussion added and unnecessary text and figures remove

    Magneto-mechanical interplay in spin-polarized point contacts

    Full text link
    We investigate the interplay between magnetic and structural dynamics in ferromagnetic atomic point contacts. In particular, we look at the effect of the atomic relaxation on the energy barrier for magnetic domain wall migration and, reversely, at the effect of the magnetic state on the mechanical forces and structural relaxation. We observe changes of the barrier height due to the atomic relaxation up to 200%, suggesting a very strong coupling between the structural and the magnetic degrees of freedom. The reverse interplay is weak, i.e. the magnetic state has little effect on the structural relaxation at equilibrium or under non-equilibrium, current-carrying conditions.Comment: 5 pages, 4 figure

    Non-Markovian Decay and Lasing Condition in an Optical Microcavity Coupled to a Structured Reservoir

    Get PDF
    The decay dynamics of the classical electromagnetic field in a leaky optical resonator supporting a single mode coupled to a structured continuum of modes (reservoir) is theoretically investigated, and the issue of threshold condition for lasing in presence of an inverted medium is comprehensively addressed. Specific analytical results are given for a single-mode microcavity resonantly coupled to a coupled resonator optical waveguide (CROW), which supports a band of continuous modes acting as decay channels. For weak coupling, the usual exponential Weisskopf-Wigner (Markovian) decay of the field in the bare resonator is found, and the threshold for lasing increases linearly with the coupling strength. As the coupling between the microcavity and the structured reservoir increases, the field decay in the passive cavity shows non exponential features, and correspondingly the threshold for lasing ceases to increase, reaching a maximum and then starting to decrease as the coupling strength is further increased. A singular behavior for the "laser phase transition", which is a clear signature of strong non-Markovian dynamics, is found at critical values of the coupling between the microcavity and the reservoir.Comment: to appear in Phys. Rev. A (December 2006 issue

    Interference effects in f-deformed fields

    Full text link
    We show how the introduction of an algeabric field deformation affects the interference phenomena. We also give a physical interpretation of the developed theory.Comment: 6 pages, Latex file, no figures, accepted by Physica Script

    Discrete Breathers in a Realistic Coarse-Grained Model of Proteins

    Full text link
    We report the results of molecular dynamics simulations of an off-lattice protein model featuring a physical force-field and amino-acid sequence. We show that localized modes of nonlinear origin (discrete breathers) emerge naturally as continuations of a subset of high-frequency normal modes residing at specific sites dictated by the native fold. In the case of the small β\beta-barrel structure that we consider, localization occurs on the turns connecting the strands. At high energies, discrete breathers stabilize the structure by concentrating energy on few sites, while their collapse marks the onset of large-amplitude fluctuations of the protein. Furthermore, we show how breathers develop as energy-accumulating centres following perturbations even at distant locations, thus mediating efficient and irreversible energy transfers. Remarkably, due to the presence of angular potentials, the breather induces a local static distortion of the native fold. Altogether, the combination of this two nonlinear effects may provide a ready means for remotely controlling local conformational changes in proteins.Comment: Submitted to Physical Biolog

    Lossy data compression with random gates

    Full text link
    We introduce a new protocol for a lossy data compression algorithm which is based on constraint satisfaction gates. We show that the theoretical capacity of algorithms built from standard parity-check gates converges exponentially fast to the Shannon's bound when the number of variables seen by each gate increases. We then generalize this approach by introducing random gates. They have theoretical performances nearly as good as parity checks, but they offer the great advantage that the encoding can be done in linear time using the Survey Inspired Decimation algorithm, a powerful algorithm for constraint satisfaction problems derived from statistical physics
    • …
    corecore