12 research outputs found

    Mix-and-Melt Colloidal Engineering

    No full text
    Increasing significance is being placed on the synthesis of smart colloidal particles, since the route to various meta-materials has been outlined through their bottom-up self-assembly. Unfortunately, making particles with well-defined shape and surface chemistry often requires considerable effort and time, and as such, they are available only in restrictive yields. Here we report a synthetic methodology, which we refer to as mix-and-melt reactions (MMR), that allows for rapid prototyping and mass production of anisotropic coreā€“shell colloids. MMR take advantage of the synergistic properties between common colloidal suspensions by aggregating then reconfiguring polystyrene shell particles onto core particle substrates. By systematically exchanging cores and shells, the resultant coreā€“shell particleā€™s properties are manipulated in a modular fashion. The influence of the constituent particlesā€™ size ratio is extensively explored, which is shown to tune shell thickness, change the aspect ratio of shells on anisotropic cores, and access specific shapes such as tetrahedra. Beyond particle shape, mixed shell systems are utilized to create regular surface patches. Surface Evolver simulations are used to demonstrate how randomly packed clusters melt into regular shapes <i>via</i> a shell compartmentalization mechanism

    Light-Triggered Inflation of Microdroplets

    No full text
    Driven systems composed largely of droplets and fuel make up a significant portion of microbiological function. At the micrometer scale, fully synthetic systems that perform an array of tasks within a uniform bulk are much more rare. In this work, we introduce an innovative design for solid-in-oil composite microdroplets. These microdroplets are engineered to nucleate an internal phase, undergo inflation, and eventually burst, all powered by a steady and uniform energy input. We show that by altering the background input, volumetric change and burst time can be tuned. When the inflated droplets release the inner contents, colloidal particles are shown to transiently attract to the release point. Lastly, we show that the system has the ability to perform multiple inflationā€“burst cycles. We anticipate that our conceptual design of internally powered microdroplets will catalyze further research into autonomous systems capable of intricate communication as well as inspire the development of advanced, responsive materials

    Light-Triggered Inflation of Microdroplets

    No full text
    Driven systems composed largely of droplets and fuel make up a significant portion of microbiological function. At the micrometer scale, fully synthetic systems that perform an array of tasks within a uniform bulk are much more rare. In this work, we introduce an innovative design for solid-in-oil composite microdroplets. These microdroplets are engineered to nucleate an internal phase, undergo inflation, and eventually burst, all powered by a steady and uniform energy input. We show that by altering the background input, volumetric change and burst time can be tuned. When the inflated droplets release the inner contents, colloidal particles are shown to transiently attract to the release point. Lastly, we show that the system has the ability to perform multiple inflationā€“burst cycles. We anticipate that our conceptual design of internally powered microdroplets will catalyze further research into autonomous systems capable of intricate communication as well as inspire the development of advanced, responsive materials

    Monitoring Molecular Transport across Colloidal Membranes

    No full text
    The controlled shaping and surface functionalization of colloidal particles has provided opportunities for the development of new materials and responsive particles. The possibility of creating hollow particles with semipermeable walls allows modulating molecular transport properties on colloidal length scales. While shapes and sizes can typically be observed by optical means, the underlying chemical and physical properties are often invisible. Here, we present measurements of cross-membrane transport via pulsed field gradient NMR in packings of hollow colloidal particles. The work is conducted using a systematic selection of particle sizes, wall permeabilities, and osmotic pressures and allows tracking organic molecules as well as ions. It is also shown that, while direct transport of molecules can be measured, indirect markers can be obtained for invisible species via the osmotic pressure as well. The cross-membrane transport information is important for applications in nanoconfinement, nanofiltration, nanodelivery, or nanoreactor devices

    Photoactivated Colloidal Dockers for Cargo Transportation

    No full text
    We introduce a self-propelled colloidal hematite docker that can be steered to a small particle cargo many times its size, dock, transport the cargo to a remote location, and then release it. The self-propulsion and docking are reversible and activated by visible light. The docker can be steered either by a weak uniform magnetic field or by nanoscale tracks in a textured substrate. The light-activated motion and docking originate from osmotic/phoretic particle transport in a concentration gradient of fuel, hydrogen peroxide, induced by the photocatalytic activity of the hematite. The docking mechanism is versatile and can be applied to various materials and shapes. The hematite dockers are simple single-component particles and are synthesized in bulk quantities. This system opens up new possibilities for designing complex micrometer-size factories as well as new biomimetic systems

    Photoactivated Colloidal Dockers for Cargo Transportation

    No full text
    We introduce a self-propelled colloidal hematite docker that can be steered to a small particle cargo many times its size, dock, transport the cargo to a remote location, and then release it. The self-propulsion and docking are reversible and activated by visible light. The docker can be steered either by a weak uniform magnetic field or by nanoscale tracks in a textured substrate. The light-activated motion and docking originate from osmotic/phoretic particle transport in a concentration gradient of fuel, hydrogen peroxide, induced by the photocatalytic activity of the hematite. The docking mechanism is versatile and can be applied to various materials and shapes. The hematite dockers are simple single-component particles and are synthesized in bulk quantities. This system opens up new possibilities for designing complex micrometer-size factories as well as new biomimetic systems

    Photoactivated Colloidal Dockers for Cargo Transportation

    No full text
    We introduce a self-propelled colloidal hematite docker that can be steered to a small particle cargo many times its size, dock, transport the cargo to a remote location, and then release it. The self-propulsion and docking are reversible and activated by visible light. The docker can be steered either by a weak uniform magnetic field or by nanoscale tracks in a textured substrate. The light-activated motion and docking originate from osmotic/phoretic particle transport in a concentration gradient of fuel, hydrogen peroxide, induced by the photocatalytic activity of the hematite. The docking mechanism is versatile and can be applied to various materials and shapes. The hematite dockers are simple single-component particles and are synthesized in bulk quantities. This system opens up new possibilities for designing complex micrometer-size factories as well as new biomimetic systems

    Monodisperse Magnetic Silica Hexapods

    No full text
    A simple yet versatile solution-based process to produce colloidal silica hexapods is developed in which various shapes of silica rods are grown on the faces of cubes in a controlled manner. In the presence of hematite cubic particles, water droplets nucleate on the surface of hematite by phase separation in pentanol. By adjusting the water concentration, six droplets can form on each face of the hematite cube. A silica precursor is then administered into the system, which gradually diffuses into the water droplets through the oil phase. Within the droplets, hydrolysis and condensation of the precursors take place, leading to formation of silica rods. As a result, silica hexapods on a magnetic hematite cubic seed are produced. Furthermore, when the emulsions are aged at 60 Ā°C prior to the silica growth, the water content in the solution decreases gradually due to evaporation and spiky sharp hexapods are produced. On the other hand, when organosilane precursor is added, pancake-like hexapods are formed due to the reduction of interfacial tension. These colloidal hexapods can further be utilized as new building blocks for self-assembly to construct functional materials or as a model system to understand collective behaviors

    Three-Dimensional Lock and Key Colloids

    No full text
    Colloids with well-defined multicavities are synthesized through the hydrolytic removal of silica cluster templates from organo-silica hybrid patchy particles. The geometry of the cavities stems from the originally assembled cluster templates, displaying well-defined three-dimensional symmetries, ranging from spherical, linear, triangular, tetrahedral, trigonal dipyramidal, octahedral, to pentagonal dipyramidal. The concave surface of the cavities is smooth, and the cavity shallowness and size can be varied. These particles with multicavities can act as ā€œlockā€ particles with multiple ā€œkey holesā€. Up to <i>n</i> ā€œkeyā€ particles can self-assemble into the lock particles via depletion interaction, resulting in multivalent, site-specific, reversible, and flexible bonding

    Synthesis and Assembly of Colloidal Particles with Sticky Dimples

    No full text
    The preparation of anisotropic colloidal particles by a simple yet versatile temperature-controlled swelling process is described. The resulting polymeric particles feature a surface dimple, the size and shape of which were determined by the amount of oil captured in particles and the interfacial tension between the three phases: polystyrene (PS), decane, and the suspending medium. Following the removal of free or physically adsorbed surfactant from the swollen particles, hydrophobic dimples were produced upon evaporation of the oil phase. We demonstrate the spontaneous assembly of these ā€˜dimpled particlesā€™ into dumbbell shapes or trimers through a site-selective hydrophobic interaction
    corecore