158 research outputs found

    Crystal structure of the ternary complex of Leishmania major pteridine reductase 1 with the cofactor NADP+/NADPH and the substrate folic acid

    Get PDF
    Pteridine reductase 1 (PTR1) is a key enzyme of the folate pathway in protozoan parasites of the genera Leishmania and Trypanosoma and is a valuable drug target for tropical diseases. This enzyme is able to catalyze the NADPH-dependent reduction of both conjugated (folate) and unconjugated (biopterin) pterins to their tetrahydro forms, starting from oxidized- or dihydrostate substrates. The currently available X-ray structures of Leishmania major PTR1 (LmPTR1) show the enzyme in its unbound, unconjugated substrate-bound (with biopterin derivatives) and inhibitor-bound forms. However, no structure has yet been determined of LmPTR1 bound to a conjugated substrate. Here, the high-resolution crystal structure of LmPTR1 in complex with folic acid is presented and the intermolecular forces that drive the binding of the substrate in the catalytic pocket are described. By expanding the collection of LmPTR1 structures in complex with process intermediates, additional insights into the active-site rearrangements that occur during the catalytic process are provided. In contrast to previous structures with biopterin derivatives, a small but significant difference in the orientation of Asp181 and Tyr194 of the catalytic triad is found. This feature is shared by PTR1 from T. brucei (TbPTR1) in complex with the same substrate molecule and may be informative in deciphering the importance of such residues at the beginning of the catalytic process

    Characterization of the Zinc-binding Site of the Histidine-Proline-rich Glycoprotein Associated with Rabbit Skeletal Muscle AMP Deaminase

    Get PDF
    The AMP deaminase-associated variant of histidine-proline-rich glycoprotein (HPRG) is isolated from rabbit skeletal muscle by a modification of the protocol previously used for the purification of AMP deaminase. This procedure yields highly pure HPRG suitable for investigation by x-ray absorption spectroscopy of the zinc-binding behavior of the protein. X-ray absorption spectroscopy analysis of a 2:1 zinc-HPRG complex shows that zinc is bound to the protein, most probably in a dinuclear cluster where each Zn(2+) ion is coordinated, on average, by three histidine ligands and one heavier ligand, likely a sulfur from a cysteine. 11 cysteines of HPRG from different species are totally conserved, suggesting that five disulfide bridges are essential for the proper folding of the protein. At least another cysteine is present at different positions in the histidine-proline-rich domain of HPRG in all species, suggesting that this cysteine is the candidate for zinc ligation in the muscle variant of HPRG. The same conclusion is likely to be true for the six histidines used by the protein as zinc ligands. The presence in muscle HPRG of a specific zinc-binding site permits us to envisage the addition of HPRG into the family of metallochaperones. In this view, HPRG may enhance the in vivo stability of metalloenzymes such as AMP deaminase

    Crystal structure of the Pseudomonas aeruginosa BEL-1 extended-spectrum β-lactamase and its complexes with moxalactam and imipenem

    Get PDF
    BEL-1 is an acquired class A extended-spectrum β-lactamase (ESBL) found in Pseudomonas aeruginosa clinical isolates from Belgium which is divergent from other ESBLs (maximum identity of 54% with GES-type enzymes). This enzyme is efficiently inhibited by clavulanate, imipenem, and moxalactam. Crystals of BEL-1 were obtained at pH 5.6, and the structure of native BEL-1 was determined from orthorhombic and monoclinic crystal forms at 1.60-Å and 1.48-Å resolution, respectively. By soaking native BEL-1 crystals, complexes with imipenem (monoclinic form, 1.79-Å resolution) and moxalactam (orthorhombic form, 1.85-Å resolution) were also obtained. In the acyl-enzyme complexes, imipenem and moxalactam differ by the position of the α- substituent and of the carbonyl oxygen (in or out of the oxyanion hole). More surprisingly, the Ω-loop, which includes the catalytically relevant residue Glu166, was found in different conformations in the various subunits, resulting in the Glu166 side chain being rotated out of the active site or even in displacement of its Cα atom up to approximately 10 Å. A BEL-1 variant showing the single Leu162Phe substitution (BEL- 2) confers a higher level of resistance to CAZ, CTX, and FEP and shows significantly lower Km values than BEL-1, especially with oxyiminocephalosporins. BEL-1 Leu162 is located at the beginning of the Ω-loop and is surrounded by Phe72, Leu139, and Leu148 (contact distances, 3.5 to 3.9 Å). This small hydrophobic cavity could not reasonably accommodate the bulkier Phe162 found in BEL-2 without altering neighboring residues or the Ω-loop itself, thus likely causing an important alteration of the enzyme kinetic properties

    Structural and Functional Characterization of the Human Thymidylate Synthase (hTS) Interface Variant R175C, New Perspectives for the Development of hTS Inhibitors

    Get PDF
    Abstract Human thymidylate synthase (hTS) is pivotal for cell survival and proliferation, indeed it provides the only synthetic source of dTMP, required for DNA biosynthesis. hTS represents a validated target for anticancer chemotherapy. However, active site-targeting drugs towards hTS have limitations connected to the onset of resistance. Thus, new strategies have to be applied to effectively target hTS without inducing resistance in cancer cells. Here, we report the generation and the functional and structural characterization of a new hTS interface variant in which Arg175 is replaced by a cysteine. Arg175 is located at the interface of the hTS obligate homodimer and protrudes inside the active site of the partner subunit, in which it provides a fundamental contribution for substrate binding. Indeed, the R175C variant results catalytically inactive. The introduction of a cysteine at the dimer interface is functional for development of new hTS inhibitors through innovative strategies, such as the tethering approach. Structural analysis, performed through X-ray crystallography, has revealed that a cofactor derivative is entrapped inside the catalytic cavity of the hTS R175C variant. The peculiar binding mode of the cofactor analogue suggests new clues exploitable for the design of new hTS inhibitors
    • …
    corecore