11,907 research outputs found

    Analysis of Leptogenesis in Supersymmetric Triplet Seesaw Model

    Get PDF
    We analyze leptogenesis in a supersymmetric triplet seesaw scenario that explains the observed neutrino masses, adopting a phenomenological approach where the decay branching ratios of the triplets and the amount of CP--violation in its different decay channels are assumed as free parameters. We find that the solutions of the relevant Boltzmann equations lead to a rich phenomenology, in particular much more complex compared to the non--supersymmetric case, mainly due to the presence of an additional Higgs doublet. Several unexpected and counter--intuitive behaviors emerge from our analysis: the amount of CP violation in one of the decay channels can prove to be be irrelevant to the final lepton asymmetry, leading to successful leptogenesis even in scenarios with a vanishing CP violation in the leptonic sector; gauge annihilations can be the dominant effect in the determination of the evolution of the triplet density up to very high values of its mass, leading anyway to a sizeable final lepton asymmetry, which is also a growing function of the wash--out parameter K=Gamma_d/H, defined as usual as the ratio between the triplet decay amplitude Gamma_d and the Hubble constant H; on the other hand, cancellations in the Boltzmann equations may lead to a vanishing lepton asymmetry if in one of the decay channels both the branching ratio and the amount of CP violation are suppressed, but not vanishing. The present analysis suggests that in the supersymmetric triplet see-saw model successful leptogenesis can be attained in a wide range of scenarios, provided that an asymmetry in the decaying triplets can act as a lepton--number reservoir.Comment: 14 pages, 6 figure

    Quantum Monte Carlo study of inhomogeneous neutron matter

    Full text link
    We present an ab-initio study of neutron drops. We use Quantum Monte Carlo techniques to calculate the energy up to 54 neutrons in different external potentials, and we compare the results with Skyrme forces. We also calculate the rms radii and radial densities, and we find that a re-adjustment of the gradient term in Skyrme is needed in order to reproduce the properties of these systems given by the ab-initio calculation. By using the ab-initio results for neutron drops for close- and open-shell configurations, we suggest how to improve Skyrme forces when dealing with systems with large isospin-asymmetries like neutron-rich nuclei.Comment: 8 pages, 6 figures, talk given at Horizons on Innovative Theories, Experiments, and Supercomputing in Nuclear Physics 2012, (HITES2012), New Orleans, Louisiana, June 4-7, 2012; to appear in Journal of Physics: Conference Series (JPCS

    A Stronger Theorem Against Macro-realism

    Get PDF
    Macro-realism is the position that certain "macroscopic" observables must always possess definite values: e.g. the table is in some definite position, even if we don't know what that is precisely. The traditional understanding is that by assuming macro-realism one can derive the Leggett-Garg inequalities, which constrain the possible statistics from certain experiments. Since quantum experiments can violate the Leggett-Garg inequalities, this is taken to rule out the possibility of macro-realism in a quantum universe. However, recent analyses have exposed loopholes in the Leggett-Garg argument, which allow many types of macro-realism to be compatible with quantum theory and hence violation of the Leggett-Garg inequalities. This paper takes a different approach to ruling out macro-realism and the result is a no-go theorem for macro-realism in quantum theory that is stronger than the Leggett-Garg argument. This approach uses the framework of ontological models: an elegant way to reason about foundational issues in quantum theory which has successfully produced many other recent results, such as the PBR theorem.Comment: Accepted journal version. 10 + 7 pages, 1 figur

    Holography, Heavy-Quark Free Energy, and the QCD Phase Diagram

    Full text link
    We use gauge/string duality to investigate the free energy of two static color sources (a heavy quark-antiquark pair) in a Yang-Mills theory in strongly interacting matter, varying temperature and chemical potential. The dual space geometry is Anti-de Sitter with a charged black-hole to describe finite temperature and density in the boundary theory, and we also include a background dilaton field to generate confinement. The resulting phase diagram in the chemical potential-temperature μT\mu-T plane is in a quite good agreement with lattice results and effective models of QCD.Comment: 4 pages, 5 figures, version published on PR

    Capacity analysis of suburban rail networks

    Get PDF
    As is well known, capacity evaluation and the identification of bottlenecks on rail networks are complex issues depending upon several technical elements. This is even more perceptible in metropolitan areas where different services (freight, long distance, metro/regional, etc.) are operated using the same limited infrastructures; as a consequence, these facilities may represent bottlenecks of the rail system since they are often highly utilized and congested. This paper tries to explore the issue of capacity evaluation of complex rail networks, proposing synthetic indicators and analyses for feasibility studies or strategic planning. The presented methodology suggests taking into account the main differences in infrastructure characteristics (e.g. single or double lines, signalling systems, terminus or passing stations, etc.) and rail services (e.g. diverse rolling stock, various frequencies, average distances and number of stops, etc.) in order to propose a general approach applicable for capacity analysis of a network as a whole, hence evaluating the utilization rate and the congestion on both lines and stations. To better explore and validate the methodology, an application to a line of the Naples’ suburban network is presented. The results confirm the applicability and effectiveness of the proposed approach; the outcomes indicate the capacity utilization rate of the considered facilities, pointing out likely bottlenecks and possible actions to improve the system efficiency

    Weak measurement og the composite Goo-Haenchen shift in the critical region

    Full text link
    By using a weak measurement technique, we investigated the interplay between the angular and lateral Goos-Haenchen shift of a focused He-Ne laser beam for incidence near the critical angle. We verified that this interplay dramatically affects the composite Goos-Haenchen shift of the propagated beam. The experimental results confirm theoretical predictions that recently appeared in the literature.Comment: 10 pages, 3 figure

    Discrete diffraction and shape-invariant beams in optical waveguide arrays

    Full text link
    General properties of linear propagation of discretized light in homogeneous and curved waveguide arrays are comprehensively investigated and compared to those of paraxial diffraction in continuous media. In particular, general laws describing beam spreading, beam decay and discrete far-field patterns in homogeneous arrays are derived using the method of moments and the steepest descend method. In curved arrays, the method of moments is extended to describe evolution of global beam parameters. A family of beams which propagate in curved arrays maintaining their functional shape -referred to as discrete Bessel beams- is also introduced. Propagation of discrete Bessel beams in waveguide arrays is simply described by the evolution of a complex qq parameter similar to the complex qq parameter used for Gaussian beams in continuous lensguide media. A few applications of the qq parameter formalism are discussed, including beam collimation and polygonal optical Bloch oscillations. \Comment: 14 pages, 5 figure

    Supersymmetric Electroweak Baryogenesis Via Resonant Sfermion Sources

    Get PDF
    We calculate the baryon asymmetry produced at the electroweak phase transition by quasi-degenerate third generation sfermions in the minimal supersymmetric extension of the Standard Model. We evaluate constraints from Higgs searches, from collider searches for supersymmetric particles, and from null searches for the permanent electric dipole moment (EDM) of the electron, of the neutron and of atoms. We find that resonant sfermion sources can in principle provide a large enough baryon asymmetry in various corners of the sfermion parameter space, and we focus, in particular, on the case of large tanβ\tan\beta, where third-generation down-type (s)fermions become relevant. We show that in the case of stop and sbottom sources, the viable parameter space is ruled out by constraints from the non-observation of the Mercury EDM. We introduce a new class of CP violating sources, quasi-degenerate staus, that escapes current EDM constraints while providing large enough net chiral currents to achieve successful "slepton-mediated" electroweak baryogenesis.Comment: 35 pages, 9 figures; v2: several revisions, but conclusions unchanged. Matches version published in PR
    corecore