33 research outputs found

    Overcharging and reentrant condensation of thermoresponsive ionic microgels

    Get PDF
    We investigated the complexation of thermoresponsive anionic poly(N-isopropylacrylamide) (PNiPAM) microgels and cationic ϵ\epsilon-polylysine (ϵ\epsilon-PLL) chains. By combining electrophoresis, light scattering, transmission electron microscopy (TEM) and dielectric spectroscopy (DS) we studied the adsorption of ϵ\epsilon-PLL onto the microgel networks and its effect on the stability of the suspensions. We show that the volume phase transition (VPT) of the microgels triggers a large polyion adsorption. Two interesting phenomena with unique features occur: a temperature-dependent microgel overcharging and a complex reentrant condensation. The latter may occur at fixed polyion concentration, when temperature is raised above the VPT of microgels, or by increasing the number density of polycations at fixed temperature. TEM and DS measurements unambiguously show that short PLL chains adsorb onto microgels and act as electrostatic glue above the VPT. By performing thermal cycles, we further show that polyion-induced clustering is a quasi-reversible process: within the time of our experiments large clusters form above the VPT and partially re-dissolve as the mixtures are cooled down. Finally we give a proof that the observed phenomenology is purely electrostatic in nature: an increase of the ionic strength gives rise to the polyion desorption from the microgel outer shell.Comment: 15 Figure

    Study of network composition in interpenetrating polymer networks of poly(N isopropylacrylamide) microgels:the role of poly(acrylic acid)

    Full text link
    Hypothesis: The peculiar swelling behaviour of poly(N-isopropylacrylamide) (PNIPAM)-based responsive microgels provides the possibility to tune both softness and volume fraction with temperature, making these systems of great interest for technological applications and theoretical implications. Their intriguing phase diagram can be even more complex if poly(acrylic acid) (PAAc) is interpenetrated within PNIPAM network to form Interpenetrating Polymer Network (IPN) microgels that exhibit an additional pH-sensitivity. The effect of the PAAc/PNIPAM polymeric ratio on both swelling capability and dynamics is still matter of investigation. Experiments: Here we investigate the role of PAAc in the behaviour of IPN microgels across the volume phase transition through dynamic light scattering (DLS), transmission electron microscopy (TEM) and electrophoretic measurements as a function of microgel concentration and pH. Findings: Our results highlight that aggregation is favored at increasing weight concentration, PAAc content and pH and that a crossover PAAc content C*_{PAAc} exists above which the ionic charges on the microgel become relevant. Moreover we show that the softness of IPN microgels can be tuned ad hoc by changing the PAAc/PNIPAM ratio. These findings provide new insights into the possibility to control experimentally aggregation properties, charge and softness of IPN microgels by varying PAAc content.Comment: preprint versio

    Biophysical and biological contributions of polyamine-coated carbon nanotubes and bidimensional buckypapers in the delivery of miRNAs to human cells

    Get PDF
    Recent findings in nanomedicine have revealed that carbon nanotubes (CNTs) can be used as potential drug carriers, therapeutic agents and diagnostics tools. Moreover, due to their ability to cross cellular membranes, their nanosize dimension, high surface area and relatively good biocompatibility, CNTs have also been employed as a novel gene delivery vector system. In our previous work, we functionalized CNTs with two polyamine polymers, polyethyleneimine (PEI) and polyamidoamine dendrimer (PAMAM). These compounds have low cytotoxicity, ability to conjugate microRNAs (such as miR-503) and, at the same time, transfect efficiently endothelial cells. The parameters contributing to the good efficiency of transfection that we observed were not investigated in detail. In fact, the diameter and length of CNTs are important parameters to be taken into account when evaluating the effects on drug delivery efficiency. In order to investigate the biophysical and biological contributions of polymer-coated CNTs in delivery of miRNAs to human cells, we decided to investigate three different preparations, characterized by different dimensions and aspect ratios. In particular, we took into account very small CNTs, a suspension of CNTs starting from the commercial product and a 2D material based on CNTs (ie, buckypapers [BPs]) to examine the transfection efficiency of a rigid scaffold. In conclusion, we extensively investigated the biophysical and biological contributions of polyamine-coated CNTs and bidimensional BPs in the delivery of miRNAs to human cells, in order to optimize the transfection efficiency of these compounds to be employed as efficient drug delivery vectors in biomedical applications

    Oxidized Palladium Supported on Ceria Nanorods for Catalytic Aerobic Oxidation of Benzyl Alcohol to Benzaldehyde in Protic Solvents

    Get PDF
    In the present study, the catalytic activity of palladium oxide (PdOx) supported on ceria nanorods (CeO2-NR) for aerobic selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (PhCHO) was evaluated. The CeO2-NR was synthesized hydrothermally and the Pd(NO3)2 was deposited by a wet impregnation method, followed by calcination to acquire PdOx/CeO2-NR. The catalysts were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), transmission electron microscopy (TEM), Brunauer–Emmet–Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS). In addition, the TPR-reduced PdOx/CeO2-NR (PdOx/CeO2-NR-Red) was studied by XRD, BET, and XPS. Characterizations showed the formation of CeO2-NR with (111) exposed plane and relatively high BET surface area. PdOx (x > 1) was detected to be the major oxide species on the PdOx/CeO2-NR. The activities of the catalysts in BnOH oxidation were evaluated using air, as an environmentally friendly oxidant, and various solvents. Effects of temperature and palladium oxidation state were investigated. The PdOx/CeO2-NR showed remarkable activity when protic solvents were utilized. The best result was achieved using PdOx/CeO2-NR and boiling ethanol as solvent, leading to 93% BnOH conversion and 96% selectivity toward PhCHO. A mechanistic hypothesis for BnOH oxidation with PdOx/CeO2-NR in ethanol is presente

    Toward a unified description of the electrostatic assembly of microgels and nanoparticles

    Full text link
    The combination of soft responsive particles, such as microgels, with nanoparticles (NPs) yields highly versatile complexes of great potential for applications, from ad-hoc plasmonic sensors to controlled protocols for loading and release. However, the assembly process between these microscale networks and the co-dispersed nano-objects has not been investigated so far at the microscopic level, preempting the possibility of designing such hybrid complexes a priori. In this work, we combine state-of-the-art numerical simulations with experiments, to elucidate the fundamental mechanisms taking place when microgels-NPs assembly is controlled by electrostatic interactions. We find a general behavior where, by increasing the number of interacting NPs, the microgel deswells up to a minimum size, after which a plateau behavior occurs. This occurs either when NPs are mainly adsorbed to the microgel corona via the folding of the more external chains, or when NPs penetrate inside the microgel, thereby inducing a collective reorganization of the polymer network. By varying microgel properties, such as fraction of crosslinkers or charge, as well as NPs size and charge, we further show that the microgel deswelling curves can be rescaled onto a single master curve, for both experiments and simulations, demonstrating that the process is entirely controlled by the charge of the whole microgel-NPs complex. Our results thus have a direct relevance in fundamental materials science and offer novel tools to tailor the nanofabrication of hybrid devices of technological interest

    Rifampicin-liposomes for mycobacterium abscessus infection treatment: intracellular uptake and antibacterial activity evaluation

    Get PDF
    : Treatment of pulmonary infections caused by Mycobacterium abscessus are extremely difficult to treat, as this species is naturally resistant to many common antibiotics. Liposomes are vesicular nanocarriers suitable for hydrophilic and lipophilic drug loading, able to deliver drugs to the target site, and successfully used in different pharmaceutical applications. Moreover, liposomes are biocompatible, biodegradable and nontoxic vesicles and nebulized liposomes are efficient in targeting antibacterial agents to macrophages. The present aim was to formulate rifampicin-loaded liposomes (RIF-Lipo) for lung delivery, in order to increase the local concentration of the antibiotic. Unilamellar liposomal vesicles composed of anionic DPPG mixed with HSPC for rifampicin delivery were designed, prepared, and characterized. Samples were prepared by using the thin-film hydration method. RIF-Lipo and unloaded liposomes were characterized in terms of size, ζ-potential, bilayer features, stability and in different biological media. Rifampicin's entrapment efficiency and release were also evaluated. Finally, biological activity of RIF-loaded liposomes in Mycobacterium abscessus-infected macrophages was investigated. The results show that RIF-lipo induce a significantly better reduction of intracellular Mycobacterium abscessus viability than the treatment with free drug. Liposome formulation of rifampicin may represent a valuable strategy to enhance the biological activity of the drug against intracellular mycobacteria

    Study of Cytotoxic and Genotoxic Effects of Hydroxyl-Functionalized Multiwalled Carbon Nanotubes on Human Pulmonary Cells

    Get PDF
    Chemical functionalization of multiwalled carbon nanotubes (MWCNTs) increases their solubility, dispersion, and biological applications. Since there are only a few studies on the toxicity of functionalized MWCNTs, we investigated the cytotoxic and genotoxic-oxidative effects of OH-functionalized MWCNTs on human lung epithelial cells (A549) in order to obtain information on their biological effects. We exposed the cells to 10, 20, 40, and 100 μg/mL of commercial MWCNT-OH for 24 h. Cytotoxicity was then evaluated as the reduction in cell viability, membrane damage, and apoptosis, assessed by MTT and LDH assays and fluorescence microscopic analysis, respectively. The Fpg-modified comet assay was used to assess direct/oxidative DNA damage. We found a concentration-dependent reduction in cell viability and an increase of percentage of apoptotic cells, with no significant cellular LDH release. There was also concentration-dependent direct DNA damage but no oxidative DNA damage. These findings demonstrate the cytotoxicity of MWCNT-OH, through reduction of cell viability and induction of apoptosis without cell membrane damage, and the genotoxicity, by direct DNA damage induction, suggesting that the MWCNTs enter the cell without damaging its membrane and directly interact with the nucleus. This preliminary study highlights the need for further research to examine the potential toxicity of functionalized MWCNTs before starting to use them in biological applications

    Chitosan nanogels by template chemical cross-linking in polyion complex micelle nanoreactors

    No full text
    Chitosan covalent nanogels cross-linked with genipin were prepared by template chemical cross-linking of chitosan in polyion complex micelle (PIC) nanoreactors. By using this method, we were able to prepare chitosan nanogels using only biocompatible materials without organic solvents PLC were prepared by interaction between chitosan (X(n) = 23, 44, and 130) and block copolymer poly(ethylene oxide)-block-poly[sodium 2 acrylamido)-2-methylpropanesulfonate](PEO-b-PAMPS) synthesized by single-electron transfer-living radical polymerization (SET-LRP). PIC with small size (diameter about 50 nm) and low polydispersity were obtained up to 5 mg/mL. After cross-linking of chitosan with genipin, the nanoreactors were dissociated by adding NaCl. The dissociation of the nanoreactors and the formation of the nanogels were confirmed by (1)H-NMR, DLS, and TEM. The size of the smallest nanogels was about 50 nm in the swollen state and 20 nm in the dry state. The amount of genipin used during reticulation was an important parameter to modulate the size of the nanogels in solution

    The Double-Faced Electrostatic Behavior of PNIPAm Microgels

    No full text
    PNIPAm microgels synthesized via free radical polymerization (FRP) are often considered as neutral colloids in aqueous media, although it is well known, since the pioneering works of Pelton and coworkers, that the vanishing electrophoretic mobility characterizing swollen microgels largely increases above the lower critical solution temperature (LCST) of PNIPAm, at which microgels partially collapse. The presence of an electric charge has been attributed to the ionic initiators that are employed when FRP is performed in water and that stay anchored to microgel particles. Combining dynamic light scattering (DLS), electrophoresis, transmission electron microscopy (TEM) and atomic force microscopy (AFM) experiments, we show that collapsed ionic PNIPAm microgels undergo large mobility reversal and reentrant condensation when they are co-suspended with oppositely charged polyelectrolytes (PE) or nanoparticles (NP), while their stability remains unaffected by PE or NP addition at lower temperatures, where microgels are swollen and their charge density is low. Our results highlight a somehow double-faced electrostatic behavior of PNIPAm microgels due to their tunable charge density: they behave as quasi-neutral colloids at temperature below LCST, while they strongly interact with oppositely charged species when they are in their collapsed state. The very similar phenomenology encountered when microgels are surrounded by polylysine chains and silica nanoparticles points to the general character of this twofold behavior of PNIPAm-based colloids in water
    corecore