24 research outputs found

    Emergent Properties of Interacting Populations of Spiking Neurons

    Get PDF
    Dynamic neuronal networks are a key paradigm of increasing importance in brain research, concerned with the functional analysis of biological neuronal networks and, at the same time, with the synthesis of artificial brain-like systems. In this context, neuronal network models serve as mathematical tools to understand the function of brains, but they might as well develop into future tools for enhancing certain functions of our nervous system. Here, we present and discuss our recent achievements in developing multiplicative point processes into a viable mathematical framework for spiking network modeling. The perspective is that the dynamic behavior of these neuronal networks is faithfully reflected by a set of non-linear rate equations, describing all interactions on the population level. These equations are similar in structure to Lotka-Volterra equations, well known by their use in modeling predator-prey relations in population biology, but abundant applications to economic theory have also been described. We present a number of biologically relevant examples for spiking network function, which can be studied with the help of the aforementioned correspondence between spike trains and specific systems of non-linear coupled ordinary differential equations. We claim that, enabled by the use of multiplicative point processes, we can make essential contributions to a more thorough understanding of the dynamical properties of interacting neuronal populations

    Parabolic systems with coupled boundary conditions

    Get PDF
    We consider elliptic operators with operator-valued coefficients and discuss the associated parabolic problems. The unknowns are functions with values in a Hilbert space WW. The system is equipped with a general class of coupled boundary conditions of the form fΩYf_{|\partial\Omega}\in \mathcal Y and fνY\frac{\partial f}{\partial \nu}\in {\mathcal Y}^\perp, where Y\mathcal Y is a closed subspace of L2(Ω;W)L^2(\partial\Omega;W). We discuss well-posedness and further qualitative properties, systematically reducing features of the parabolic system to operator-theoretical properties of the orthogonal projection onto Y\mathcal Y

    Well-Posedness and Symmetries of Strongly Coupled Network Equations

    Full text link
    We consider a diffusion process on the edges of a finite network and allow for feedback effects between different, possibly non-adjacent edges. This generalizes the setting that is common in the literature, where the only considered interactions take place at the boundary, i. e., in the nodes of the network. We discuss well-posedness of the associated initial value problem as well as contractivity and positivity properties of its solutions. Finally, we discuss qualitative properties that can be formulated in terms of invariance of linear subspaces of the state space, i. e., of symmetries of the associated physical system. Applications to a neurobiological model as well as to a system of linear Schroedinger equations on a quantum graph are discussed.Comment: 25 pages. Corrected typos and minor change

    How Structure Determines Correlations in Neuronal Networks

    Get PDF
    Networks are becoming a ubiquitous metaphor for the understanding of complex biological systems, spanning the range between molecular signalling pathways, neural networks in the brain, and interacting species in a food web. In many models, we face an intricate interplay between the topology of the network and the dynamics of the system, which is generally very hard to disentangle. A dynamical feature that has been subject of intense research in various fields are correlations between the noisy activity of nodes in a network. We consider a class of systems, where discrete signals are sent along the links of the network. Such systems are of particular relevance in neuroscience, because they provide models for networks of neurons that use action potentials for communication. We study correlations in dynamic networks with arbitrary topology, assuming linear pulse coupling. With our novel approach, we are able to understand in detail how specific structural motifs affect pairwise correlations. Based on a power series decomposition of the covariance matrix, we describe the conditions under which very indirect interactions will have a pronounced effect on correlations and population dynamics. In random networks, we find that indirect interactions may lead to a broad distribution of activation levels with low average but highly variable correlations. This phenomenon is even more pronounced in networks with distance dependent connectivity. In contrast, networks with highly connected hubs or patchy connections often exhibit strong average correlations. Our results are particularly relevant in view of new experimental techniques that enable the parallel recording of spiking activity from a large number of neurons, an appropriate interpretation of which is hampered by the currently limited understanding of structure-dynamics relations in complex networks
    corecore