19 research outputs found

    Benign TdT-positive cells in pediatric and adult lymph nodes: a potential diagnostic pitfall

    Get PDF
    Benign TdT-positive cells have been documented in a variety of non-hematopoietic tissues. Scant data are however available on their presence in non-neoplastic lymph nodes. This study is aimed to: (i) characterize the presence/distribution of benign TdT-positive cells in pediatric and adult reactive lymph nodes; (ii) define the phenotype and nature of such elements. This retrospective study considered 141 reactive lymph nodes from pediatric and adult patients without history of neoplastic disease. TdT-positive cells were characterized by immunohistochemical and morphometric analyses and their presence was correlated with the clinical-pathological features. The nature of TdT-positive cells was investigated by: (i) double immunostaining for early lymphoid cell markers; and (ii) assessment of TdT expression in fetal lymph nodes. Sparse TdT-positive cells were documented in all pediatric cases and in most (76%) adult lymph nodes. TdT-positive cell density was higher in children than adults (15.9/mm2 versus 8.6/mm2; P<.05). TdT positivity did not correlate with any clinical and histological parameter and double immunostaining disclosed a phenotype compatible with early lymphoid precursors (positivity for CD34, CD10 and variable expression of CD7). A very high TdT-positive cell density (802.4/mm2) was reported in all fetal lymph nodes. In conclusion, TdT-positive cells are a common finding in pediatric and adult lymph nodes. The interstitial distribution and low number of such cells allows for the differential diagnosis with precursor lymphoid neoplasms. The high density in fetal lymph nodes and the phenotype of such cells suggest their belonging to an immature lymphoid subset gradually decreasing with age

    Evaluation and control of the in-plane stiffness of timber floors for the performance-based retrofit of URM buildings

    No full text
    The seismic response of existing un-reinforced masonry (URM) buildings is strongly dependent on the characteristics of wooden floors and, in particular, on their in-plane stiffness and on the quality of connection between the floors and the URM elements. It is generally well-recognized that an adequate inplane-stiffness and proper connections can significantly improve the three-dimensional response of these buildings, obtaining a better distribution and transfer of forces to the lateral load resisting walls. However, the extensive damage observed during past earthquakes on URM buildings of different types have highlighted serious shortcomings in typical retrofit interventions adopted in the past and based on stiffening the diaphragm. Recent numerical investigations have also confirmed that increasing the stiffness of the diaphragm is not necessarily going to lead to an improved response, but could actually result to detrimental effects. The evaluation of the in-plane stiffness of timber floors in their as-built and retrofitted configuration is still an open question and a delicate issue, with design guidelines and previous research results providing incomplete and sometimes controversial suggestions to practicing engineers involved in the assessment and/or retrofit of these type of structures. In this contribution, the role of the in-plane stiffness of timber floors in the seismic response of URM buildings is critically discussed, based on the relatively limited available experimental and numerical evidences. A framework for a performance-based assessment and retrofit strategy of URM buildings, capable of accounting for the effects of a flexible diaphragm on the response prior to and after the retrofit intervention, is then proposed. By controlling the in-plane stiffness of the diaphragm, adopting a specific strengthening (or weakening) intervention, the displacements, accelerations and internal force demands can be maintained within targeted levels. This will protect undesired local mechanisms and aim for a more appropriate hierarchy of strength within the whole system

    Long-Standing Ulcerative Colitis May Trigger a Multilineage Cancerization Field

    No full text
    Longstanding/relapsing inflammation characterizing ulcerative colitis (UC) has been associated to an increased risk of colon mucosa neoplastic transformation. We describe the clinicopathological features of a UC-related poorly-differentiated neuroendocrine carcinoma coexisting with a conventional adenocarcinoma. This case supports UC as a multilineage cancerization field. </jats:p
    corecore