7 research outputs found

    Hydrolysis of Coordinated Diazoalkanes To Yield Side-On 1,2-Diazene Derivatives

    No full text
    Diazoalkane complexes [Ru­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(N<sub>2</sub>CAr1Ar2)­(PPh<sub>3</sub>)­{P­(OR)<sub>3</sub>}]­BPh<sub>4</sub> [R = Me (<b>1</b>), Et (<b>2</b>); Ar1 = Ar2 = Ph (<b>a</b>); Ar1 = Ph, Ar2 = <i>p</i>-tolyl (<b>b</b>); Ar1Ar2 = C<sub>12</sub>H<sub>8</sub> (<b>c</b>)] were prepared by allowing chloro complexes RuCl­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(PPh<sub>3</sub>)­[P­(OR)<sub>3</sub>] to react with diazoalkane Ar1Ar2CN<sub>2</sub> in ethanol. The treatment of compounds <b>1</b> and <b>2</b> with H<sub>2</sub>O afforded 1,2-diazene derivatives [Ru­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(η<sup>2</sup>-NHNH)­(PPh<sub>3</sub>)­{P­(OR)<sub>3</sub>}]­BPh<sub>4</sub> (<b>3</b> and <b>4</b>) and ketone Ar1Ar2CO. A reaction path involving nucleophilic attack by H<sub>2</sub>O on the coordinated diazoalkane is proposed. The complexes were characterized spectroscopically (IR and NMR) and by X-ray crystal structure determination of [Ru­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(η<sup>2</sup>-NHNH)­(PPh<sub>3</sub>)­{P­(OMe)<sub>3</sub>}]­BPh<sub>4</sub> (<b>3</b>)

    Preparation and Reactivity of Stannyl Complexes of Ruthenium(II) Stabilized by an Indenyl Ligand

    No full text
    Trichlorostannyl complexes Ru­(SnCl<sub>3</sub>)­(η<sup>5</sup>-C<sub>9</sub>H<sub>7</sub>)­(PPh<sub>3</sub>)­L (<b>1</b>; L = P­(OMe)<sub>3</sub>, P­(OEt)<sub>3</sub>) were prepared by allowing chloro compounds RuCl­(η<sup>5</sup>-C<sub>9</sub>H<sub>7</sub>)­(PPh<sub>3</sub>)­L to react with SnCl<sub>2</sub>·2H<sub>2</sub>O in ethanol. Treatment of compounds <b>1</b> with NaBH<sub>4</sub> in ethanol yielded the tin trihydride derivatives Ru­(SnH<sub>3</sub>)­(η<sup>5</sup>-C<sub>9</sub>H<sub>7</sub>)­(PPh<sub>3</sub>)­L (<b>2</b>). The reaction of trichlorostannyl complexes <b>1</b> with MgBrMe in diethyl ether afforded the chlorodimethylstannyl derivatives Ru­(SnClMe<sub>2</sub>)­(η<sup>5</sup>-C<sub>9</sub>H<sub>7</sub>)­(PPh<sub>3</sub>)­L (<b>3</b>), whereas reaction with Li<sup>+</sup>Cî—ŒCPh<sup>–</sup> in THF yielded the trialkynylstannyl compounds Ru­[Sn­(Cî—ŒCPh)<sub>3</sub>]­(η<sup>5</sup>-C<sub>9</sub>H<sub>7</sub>)­(PPh<sub>3</sub>)­L (<b>4</b>). Treatment of the trihydridostannyl complexes <b>2</b> with the alkyl propiolate HCî—ŒCCOOR led to the trivinylstannyl derivatives Ru­[Sn­{C­(COOR)CH<sub>2</sub>}<sub>3</sub>]­(η<sup>5</sup>-C<sub>9</sub>H<sub>7</sub>)­(PPh<sub>3</sub>)­L (<b>5</b>,<b> 6</b>; R = Me, Et). However, the reaction of [Ru]–SnH<sub>3</sub> (<b>2</b>) with the propargylic alcohol HCî—ŒCCPh<sub>2</sub>OH yielded the alkene H<sub>2</sub>CC­(H)­CPh<sub>2</sub>OH and the hydride RuH­(η<sup>5</sup>-C<sub>9</sub>H<sub>7</sub>)­(PPh<sub>3</sub>)­L (<b>7</b>). Treatment of tin trihydride complexes <b>2</b> with H<sub>2</sub>O led to the trihydroxostannyl derivatives Ru­[Sn­(OH)<sub>3</sub>]­(η<sup>5</sup>-C<sub>9</sub>H<sub>7</sub>)­(PPh<sub>3</sub>)­L (<b>8</b>). Protonation of [Ru]–SnH<sub>3</sub> (<b>2</b>) with triflic acid (HOTf) produced the very unstable dihydridostannyl compound Ru­[SnH<sub>2</sub>(OTf)]­(η<sup>5</sup>-C<sub>9</sub>H<sub>7</sub>)­(PPh<sub>3</sub>)­L (<b>9</b>). Stabilization of SnH<sub>2</sub> species was achieved by protonation with HOTf at −30 °C of the cyclopentadienyl compound Ru­(SnH<sub>3</sub>)­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(PPh<sub>3</sub>)­[P­(OMe)<sub>3</sub>], which yielded the complex Ru­[SnH<sub>2</sub>(OTf)]­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(PPh<sub>3</sub>)­[P­(OMe)<sub>3</sub>] (<b>10a</b>). The complexes were characterized by spectroscopy (IR and <sup>1</sup>H, <sup>31</sup>P, <sup>13</sup>C, and <sup>119</sup>Sn NMR data) and by X-ray crystal structure determinations of Ru­[Sn­(Cî—ŒCPh)<sub>3</sub>]­(η<sup>5</sup>-C<sub>9</sub>H<sub>7</sub>)­(PPh<sub>3</sub>)­[P­(OEt)<sub>3</sub>] (<b>4b</b>) and Ru­[Sn­(OH)<sub>3</sub>]­(η<sup>5</sup>-C<sub>9</sub>H<sub>7</sub>)­(PPh<sub>3</sub>)­[P­(OEt)<sub>3</sub>] (<b>8b</b>)

    Preparation of Diazoalkane Complexes of Ruthenium and Their Cyclization Reactions with Alkenes and Alkynes

    No full text
    The diazoalkane complexes [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(N<sub>2</sub>CAr1Ar2)­(PPh<sub>3</sub>)­(L)]­BPh<sub>4</sub> (<b>1</b>–<b>5</b>: Ar1 = Ar2 = Ph (<b>a</b>), Ar1 = Ph and Ar2 = <i>p-</i>tolyl (<b>b</b>), Ar1Ar2 = C<sub>12</sub>H<sub>8</sub> (<b>c</b>), Ar1 = Ph and Ar2 = PhCO (<b>d</b>); L = PPh<sub>3</sub> (<b>1</b>), P­(OMe)<sub>3</sub> (<b>2</b>), P­(OEt)<sub>3</sub> (<b>3</b>), PPh­(OEt)<sub>2</sub> (<b>4</b>), Bu<sup><i>t</i></sup>NC (<b>5</b>)) were prepared by allowing the chloro compounds RuCl­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(PPh<sub>3</sub>)­(L) to react with the diazoalkanes Ar1Ar2CN<sub>2</sub> in ethanol. Treatment of complexes <b>1</b>–<b>5</b> with ethylene (CH<sub>2</sub>CH<sub>2</sub>) under mild conditions (1 atm, room temperature) led not only to the η<sup>2</sup>-ethylene complexes [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(η<sup>2</sup>-CH<sub>2</sub>CH<sub>2</sub>)­(PPh<sub>3</sub>)­(L)]­BPh<sub>4</sub> (<b>10</b>–<b>14</b>) but also to dipolar (3 + 2) cycloaddition, affording the 4,5-dihydro-3<i>H</i>-pyrazole derivatives [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{η<sup>1</sup>-NNC­(Ar1Ar2)­CH<sub>2</sub>CH<sub>2</sub>}­(PPh<sub>3</sub>)­(L)]­BPh<sub>4</sub> (<b>6</b>–<b>9</b>). Acrylonitrile (CH<sub>2</sub>C­(H)­CN) reacted with diazoalkane complexes <b>2</b> and <b>3</b> to give the 1<i>H</i>-pyrazoline derivatives [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{η<sup>1</sup>-NC­(CN)­CH<sub>2</sub>C­(Ar1Ar2)NH}­(PPh<sub>3</sub>)­(L)]­BPh<sub>4</sub> (<b>19</b>, <b>20</b>). However, reactions with propylene (CH<sub>2</sub>C­(H)­CH<sub>3</sub>), maleic anhydride (ma, CHCHCO­(O)CO) and dimethyl maleate (dmm, CH<sub>3</sub>OCOCHCHOCOCH<sub>3</sub>) led to the η<sup>2</sup>-alkene complexes [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(η<sup>2</sup>-R1CHCHR2)­(PPh<sub>3</sub>)­(L)]­BPh<sub>4</sub> (<b>17</b>–<b>22</b>). Treatment of the diazoalkane complexes <b>1</b> and <b>2</b> with acetylene CHî—ŒCH under mild conditions (1 atm, room temperature) led to dipolar cycloaddition, affording the 3<i>H</i>-pyrazole complexes [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{η<sup>1</sup>-NNC­(Ar1Ar2)­CHCH}­(PPh<sub>3</sub>)­{P­(OMe)<sub>3</sub>}]­BPh<sub>4</sub> (<b>24</b>), whereas reactions with the terminal alkynes PhCî—ŒCH and Bu<sup><i>t</i></sup>Cî—ŒCH gave the vinylidene derivatives [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{CC­(H)­R}­(PPh<sub>3</sub>)­{P­(OMe)<sub>3</sub>}]­BPh<sub>4</sub> (<b>25</b>,<b> 26</b>). The alkyl propiolates HCî—ŒCCOOR1 (R1 = Me, Et) also reacted with complexes <b>2</b> to give the 3<i>H</i>-pyrazole complexes [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{η<sup>1</sup>-NNC­(Ar1Ar2)­C­(COOR1)CH}­(PPh<sub>3</sub>)­{P­(OMe)<sub>3</sub>}]­BPh<sub>4</sub> (<b>27</b>,<b> 28</b>). The complexes were characterized by spectroscopy and by X-ray crystal structure determinations of [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{η<sup>1</sup>-NC­(CN)­CH<sub>2</sub>C­(Ph)­(<i>p</i>-tolyl)NH}­(PPh<sub>3</sub>)­{P­(OMe)<sub>3</sub>}]­BPh<sub>4</sub> (<b>19b</b>), [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{η<sup>2</sup>-CHCHCO­(O)CO}­(PPh<sub>3</sub>)­{P­(OMe)<sub>3</sub>}]­BPh<sub>4</sub> (<b>21</b>), and [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{η<sup>1</sup>-NNC­(C<sub>12</sub>H<sub>8</sub>)­CHCH}­(PPh<sub>3</sub>)­{P­(OMe)<sub>3</sub>}]­BPh<sub>4</sub> (<b>24c</b>)

    Preparation of Diazoalkane Complexes of Ruthenium and Their Cyclization Reactions with Alkenes and Alkynes

    No full text
    The diazoalkane complexes [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(N<sub>2</sub>CAr1Ar2)­(PPh<sub>3</sub>)­(L)]­BPh<sub>4</sub> (<b>1</b>–<b>5</b>: Ar1 = Ar2 = Ph (<b>a</b>), Ar1 = Ph and Ar2 = <i>p-</i>tolyl (<b>b</b>), Ar1Ar2 = C<sub>12</sub>H<sub>8</sub> (<b>c</b>), Ar1 = Ph and Ar2 = PhCO (<b>d</b>); L = PPh<sub>3</sub> (<b>1</b>), P­(OMe)<sub>3</sub> (<b>2</b>), P­(OEt)<sub>3</sub> (<b>3</b>), PPh­(OEt)<sub>2</sub> (<b>4</b>), Bu<sup><i>t</i></sup>NC (<b>5</b>)) were prepared by allowing the chloro compounds RuCl­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(PPh<sub>3</sub>)­(L) to react with the diazoalkanes Ar1Ar2CN<sub>2</sub> in ethanol. Treatment of complexes <b>1</b>–<b>5</b> with ethylene (CH<sub>2</sub>CH<sub>2</sub>) under mild conditions (1 atm, room temperature) led not only to the η<sup>2</sup>-ethylene complexes [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(η<sup>2</sup>-CH<sub>2</sub>CH<sub>2</sub>)­(PPh<sub>3</sub>)­(L)]­BPh<sub>4</sub> (<b>10</b>–<b>14</b>) but also to dipolar (3 + 2) cycloaddition, affording the 4,5-dihydro-3<i>H</i>-pyrazole derivatives [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{η<sup>1</sup>-NNC­(Ar1Ar2)­CH<sub>2</sub>CH<sub>2</sub>}­(PPh<sub>3</sub>)­(L)]­BPh<sub>4</sub> (<b>6</b>–<b>9</b>). Acrylonitrile (CH<sub>2</sub>C­(H)­CN) reacted with diazoalkane complexes <b>2</b> and <b>3</b> to give the 1<i>H</i>-pyrazoline derivatives [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{η<sup>1</sup>-NC­(CN)­CH<sub>2</sub>C­(Ar1Ar2)NH}­(PPh<sub>3</sub>)­(L)]­BPh<sub>4</sub> (<b>19</b>, <b>20</b>). However, reactions with propylene (CH<sub>2</sub>C­(H)­CH<sub>3</sub>), maleic anhydride (ma, CHCHCO­(O)CO) and dimethyl maleate (dmm, CH<sub>3</sub>OCOCHCHOCOCH<sub>3</sub>) led to the η<sup>2</sup>-alkene complexes [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(η<sup>2</sup>-R1CHCHR2)­(PPh<sub>3</sub>)­(L)]­BPh<sub>4</sub> (<b>17</b>–<b>22</b>). Treatment of the diazoalkane complexes <b>1</b> and <b>2</b> with acetylene CHî—ŒCH under mild conditions (1 atm, room temperature) led to dipolar cycloaddition, affording the 3<i>H</i>-pyrazole complexes [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{η<sup>1</sup>-NNC­(Ar1Ar2)­CHCH}­(PPh<sub>3</sub>)­{P­(OMe)<sub>3</sub>}]­BPh<sub>4</sub> (<b>24</b>), whereas reactions with the terminal alkynes PhCî—ŒCH and Bu<sup><i>t</i></sup>Cî—ŒCH gave the vinylidene derivatives [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{CC­(H)­R}­(PPh<sub>3</sub>)­{P­(OMe)<sub>3</sub>}]­BPh<sub>4</sub> (<b>25</b>,<b> 26</b>). The alkyl propiolates HCî—ŒCCOOR1 (R1 = Me, Et) also reacted with complexes <b>2</b> to give the 3<i>H</i>-pyrazole complexes [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{η<sup>1</sup>-NNC­(Ar1Ar2)­C­(COOR1)CH}­(PPh<sub>3</sub>)­{P­(OMe)<sub>3</sub>}]­BPh<sub>4</sub> (<b>27</b>,<b> 28</b>). The complexes were characterized by spectroscopy and by X-ray crystal structure determinations of [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{η<sup>1</sup>-NC­(CN)­CH<sub>2</sub>C­(Ph)­(<i>p</i>-tolyl)NH}­(PPh<sub>3</sub>)­{P­(OMe)<sub>3</sub>}]­BPh<sub>4</sub> (<b>19b</b>), [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{η<sup>2</sup>-CHCHCO­(O)CO}­(PPh<sub>3</sub>)­{P­(OMe)<sub>3</sub>}]­BPh<sub>4</sub> (<b>21</b>), and [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{η<sup>1</sup>-NNC­(C<sub>12</sub>H<sub>8</sub>)­CHCH}­(PPh<sub>3</sub>)­{P­(OMe)<sub>3</sub>}]­BPh<sub>4</sub> (<b>24c</b>)

    Azo Complexes of Osmium(II): Preparation and Reactivity of Organic Azide and Hydrazine Derivatives

    No full text
    Mixed-ligand hydride complexes OsHCl­(CO)­(PPh<sub>3</sub>)<sub>2</sub>L (<b>2</b>) [L = P­(OMe)<sub>3</sub>, P­(OEt)<sub>3</sub>] were prepared by allowing OsHCl­(CO)­(PPh<sub>3</sub>)<sub>3</sub> (<b>1</b>) to react with an excess of phosphite P­(OR)<sub>3</sub> in refluxing toluene. Dichloro compounds OsCl<sub>2</sub>(CO)­(PPh<sub>3</sub>)<sub>2</sub>L (<b>3</b>,<b> 4</b>) were also prepared by reacting <b>1</b>, <b>2</b> with HCl. Treatment of hydrides OsHCl­(CO)­(PPh<sub>3</sub>)<sub>2</sub>L (<b>2</b>), first with triflic acid and then with an excess of RN<sub>3</sub> afforded organic azide complexes [OsCl­(η<sup>1</sup>-N<sub>3</sub>R)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>L]­BPh<sub>4</sub> (<b>5</b>–<b>7</b>) [R = 4-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>, C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>, C<sub>6</sub>H<sub>5</sub>; L = P­(OEt)<sub>3</sub>]. Benzylazide complexes react in CH<sub>2</sub>Cl<sub>2</sub>/ethanol solution, leading to the imine derivative [OsCl­(CO)­{η<sup>1</sup>-NHC­(H)­C<sub>6</sub>H<sub>4</sub>-4-CH<sub>3</sub>}­(PPh<sub>3</sub>)<sub>2</sub>{P­(OEt)<sub>3</sub>}]­BPh<sub>4</sub> (<b>8b</b>). Hydrazine complexes [OsCl­(CO)­(RNHNH<sub>2</sub>)­(PPh<sub>3</sub>)<sub>2</sub>L]­BPh<sub>4</sub> (<b>9</b>–<b>11</b>) [R = H, CH<sub>3</sub>, C<sub>6</sub>H<sub>5</sub>; L = P­(OMe)<sub>3</sub>, P­(OEt)<sub>3</sub>] were prepared by allowing hydride species OsHCl­(CO)­(PPh<sub>3</sub>)<sub>2</sub>L (<b>2</b>) to react first with triflic acid and then with an excess of hydrazine. Aryldiazene derivatives [OsCl­(CO)­(ArNNH)­(PPh<sub>3</sub>)<sub>2</sub>L]­BPh<sub>4</sub> (<b>12</b>,<b> 13</b>) were also prepared following two different methods: (i) by oxidizing arylhydrazine [OsCl­(C<sub>6</sub>H<sub>5</sub>NHNH<sub>2</sub>)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>L]­BPh<sub>4</sub> (<b>11</b>) with Pb­(OAc)<sub>4</sub> in CH<sub>2</sub>Cl<sub>2</sub> at −30 °C; (ii) by allowing hydride species OsHCl­(CO)­(PPh<sub>3</sub>)<sub>2</sub>L (<b>2</b>) to react with aryldiazonium cations ArN<sub>2</sub><sup>+</sup> (Ar = C<sub>6</sub>H<sub>5</sub>, 4-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>) in CH<sub>2</sub>Cl<sub>2</sub>. The complexes were characterized spectroscopically and by X-ray crystal structure determination of OsHCl­(CO)­(PPh<sub>3</sub>)<sub>2</sub>[P­(OEt)<sub>3</sub>] (<b>2b</b>) and [OsCl­{η<sup>1</sup>-NHC­(H)­C<sub>6</sub>H<sub>4</sub>-4-CH<sub>3</sub>}­(CO)­(PPh<sub>3</sub>)<sub>2</sub>{P­(OEt)<sub>3</sub>}]­BPh<sub>4</sub> (<b>8b</b>)

    Cycloaddition of Coordinated Diazoalkanes to Ethene To Yield 3<i>H</i>‑Pyrazole Derivatives

    No full text
    Diazoalkane complexes [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(N<sub>2</sub>CAr1Ar2)­(PPh<sub>3</sub>)­L]­BPh<sub>4</sub> (<b>1</b>,<b> 2</b>; Ar1 = Ph, Ar2 = <i>p-</i>tolyl; Ar1Ar2 = C<sub>12</sub>H<sub>8</sub>; L = P­(OMe)<sub>3</sub>, P­(OEt)<sub>3</sub>) were prepared by allowing compounds RuCl­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(PPh<sub>3</sub>)­L to react with diazoalkane in ethanol. Treatment of complexes <b>1</b> and <b>2</b> with ethylene under mild conditions (1 atm, room temperature) led not only to the ethylene complexes [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(η<sup>2</sup>-CH<sub>2</sub>CH<sub>2</sub>)­(PPh<sub>3</sub>)­L]­BPh<sub>4</sub> (<b>5</b>,<b> 6</b>) but also to dipolar (3 + 2) cycloaddition, affording the 3<i>H</i>-pyrazole derivatives [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{η<sup>1</sup>-NNC­(Ar1Ar2)­CH<sub>2</sub>CH<sub>2</sub>}­(PPh<sub>3</sub>)­L]­BPh<sub>4</sub> (<b>3</b>,<b> 4</b>). The propylene complexes [Ru­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(η<sup>2</sup>-CH<sub>3</sub>CHCH<sub>2</sub>)­(PPh<sub>3</sub>)­L]­BPh<sub>4</sub> (<b>7</b>,<b> 8</b>) were also prepared. The compounds were characterized by spectroscopy and by X-ray crystal structure determinations of <b>2a</b>, <b>3b</b>, and <b>7</b>

    Azo Complexes of Osmium(II): Preparation and Reactivity of Organic Azide and Hydrazine Derivatives

    No full text
    Mixed-ligand hydride complexes OsHCl­(CO)­(PPh<sub>3</sub>)<sub>2</sub>L (<b>2</b>) [L = P­(OMe)<sub>3</sub>, P­(OEt)<sub>3</sub>] were prepared by allowing OsHCl­(CO)­(PPh<sub>3</sub>)<sub>3</sub> (<b>1</b>) to react with an excess of phosphite P­(OR)<sub>3</sub> in refluxing toluene. Dichloro compounds OsCl<sub>2</sub>(CO)­(PPh<sub>3</sub>)<sub>2</sub>L (<b>3</b>,<b> 4</b>) were also prepared by reacting <b>1</b>, <b>2</b> with HCl. Treatment of hydrides OsHCl­(CO)­(PPh<sub>3</sub>)<sub>2</sub>L (<b>2</b>), first with triflic acid and then with an excess of RN<sub>3</sub> afforded organic azide complexes [OsCl­(η<sup>1</sup>-N<sub>3</sub>R)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>L]­BPh<sub>4</sub> (<b>5</b>–<b>7</b>) [R = 4-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>, C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>, C<sub>6</sub>H<sub>5</sub>; L = P­(OEt)<sub>3</sub>]. Benzylazide complexes react in CH<sub>2</sub>Cl<sub>2</sub>/ethanol solution, leading to the imine derivative [OsCl­(CO)­{η<sup>1</sup>-NHC­(H)­C<sub>6</sub>H<sub>4</sub>-4-CH<sub>3</sub>}­(PPh<sub>3</sub>)<sub>2</sub>{P­(OEt)<sub>3</sub>}]­BPh<sub>4</sub> (<b>8b</b>). Hydrazine complexes [OsCl­(CO)­(RNHNH<sub>2</sub>)­(PPh<sub>3</sub>)<sub>2</sub>L]­BPh<sub>4</sub> (<b>9</b>–<b>11</b>) [R = H, CH<sub>3</sub>, C<sub>6</sub>H<sub>5</sub>; L = P­(OMe)<sub>3</sub>, P­(OEt)<sub>3</sub>] were prepared by allowing hydride species OsHCl­(CO)­(PPh<sub>3</sub>)<sub>2</sub>L (<b>2</b>) to react first with triflic acid and then with an excess of hydrazine. Aryldiazene derivatives [OsCl­(CO)­(ArNNH)­(PPh<sub>3</sub>)<sub>2</sub>L]­BPh<sub>4</sub> (<b>12</b>,<b> 13</b>) were also prepared following two different methods: (i) by oxidizing arylhydrazine [OsCl­(C<sub>6</sub>H<sub>5</sub>NHNH<sub>2</sub>)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>L]­BPh<sub>4</sub> (<b>11</b>) with Pb­(OAc)<sub>4</sub> in CH<sub>2</sub>Cl<sub>2</sub> at −30 °C; (ii) by allowing hydride species OsHCl­(CO)­(PPh<sub>3</sub>)<sub>2</sub>L (<b>2</b>) to react with aryldiazonium cations ArN<sub>2</sub><sup>+</sup> (Ar = C<sub>6</sub>H<sub>5</sub>, 4-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>) in CH<sub>2</sub>Cl<sub>2</sub>. The complexes were characterized spectroscopically and by X-ray crystal structure determination of OsHCl­(CO)­(PPh<sub>3</sub>)<sub>2</sub>[P­(OEt)<sub>3</sub>] (<b>2b</b>) and [OsCl­{η<sup>1</sup>-NHC­(H)­C<sub>6</sub>H<sub>4</sub>-4-CH<sub>3</sub>}­(CO)­(PPh<sub>3</sub>)<sub>2</sub>{P­(OEt)<sub>3</sub>}]­BPh<sub>4</sub> (<b>8b</b>)
    corecore