2,648 research outputs found

    Heterologous Expression of WT and Mutant Photoreceptor Peripherin/rds in Madin Darby Canine Kidney Cells: an Assessment of Fusogenic Function

    Get PDF
    Peripherin/rds is proposed to function as a fusion protein within the rod outer segment and a fusion domain has been mapped to amino acids 311–325 within the C-terminus. To map regions within peripherin/rds required for membrane fusion a series of C-terminal mutants was analyzed. Madin Darby canine kidney cells were transiently transfected with an Xpress or FLAG epitope tagged peripherin/rds (wt) and three mutants of peripherin/rds. The mutants selected were a P296T mutant (replacement of the proline at position 296 with a threonine) and two C-terminal deletion mutants (one lacking the terminal 10 amino acids, Δ10 and one lacking the terminal 50 amino acids, Δ50). The wt protein, the P296T and Δ10 mutants were detected on SDS–PAGE as 84 kDa dimers, that resolved into 38–42 kDa monomers under reducing conditions. The Δ50 mutant showed a slightly increased mobility. The cellular localization of mutants differed from that of wt peripherin/rds. The wt Xpress-human and wt FLAG-bovine peripherin/rds were localized to both intracellular and plasma membranes. In contrast, the C-terminal deletion mutants were localized only to the intracellular membrane. The P296T mutant presented a still different pattern: initially the protein localized to intracellular membranes. Upon confluence, however, the localization appeared to become predominantly plasma membrane. To assess the fusion activity of the proteins, the cell membranes were fractionated using sucrose density gradient centrifugation and the various fractions identified based on immunoreactivity in Western blot analysis with Golgi (anti-rab 6) or plasma membrane (anti-ZO-3) specific marker proteins. All membrane fractions were assayed for fusion with ROS plasma membrane vesicles. The plasma membrane enriched fractions (isolated at densities of 1·08 and 1·125 g ml−1) containing tagged peripherin/rds and the Δ10 mutant promoted membrane fusion with ROS plasma membrane vesicles. In contrast, fusion was not detected with plasma membrane vesicles from mock-transfected cells or the Δ50 peripherin/rds deletion mutant. Fusion was enhanced in a less dense fraction enriched in the P296T mutant (isolated from the 1·04/1·02 interface) relative to wt. Fusion was dependent on the presence of peripherin/rds in the membranes and could be inhibited with trypsinolysis and competition studies with the bovine fusion peptide, PP-5. Peptide competition suggests that the fusion domain of human peripherin/rds is most likely identical to that characterized in bovine and corresponds to amino acid residues 312–326. The C-terminal deletion mutants have allowed us to predict the minimal region of the C-terminus necessary for fusion to include residues starting at number 335. In addition a second region important in the formation of a fusion competent peripherin/rds has been mapped to a region upstream of the fusion peptide domain

    Heterologous Expression of wt and Mutant Photoreceptor Peripherin/rds in Madin Darby Canine Kidney Cells: An Assessment of Fusogenic Function

    Get PDF
    Peripherin/rds is proposed to function as a fusion protein within the rod outer segment and a fusion domain has been mapped to amino acids 311-325 within the C-terminus. To map regions within peripherin/rds required for membrane fusion a series of C-terminal mutants was analyzed. Madin Darby canine kidney cells were transiently transfected with an Xpress or FLAG epitope tagged peripherin/rds (wt) and three mutants of peripherin/rds. The mutants selected were a P296T mutant (replacement of the proline at position 296 with a threonine) and two C-terminal deletion mutants (one lacking the terminal 10 amino acids, Δ10 and one lacking the terminal 50 amino acids, Δ50). The wt protein, the P296T and Δ10 mutants were detected on SDS-PAGE as 84 kDa dimers, that resolved into 38-42 kDa monomers under reducing conditions. The Δ50 mutant showed a slightly increased mobility. The cellular localization of mutants differed from that of wt peripherin/rds. The wt Xpress-human and wt FLAG-bovine peripherin/rds were localized to both intracellular and plasma membranes. In contrast, the C-terminal deletion mutants were localized only to the intracellular membrane. The P296T mutant presented a still different pattern: initially the protein localized to intracellular membranes. Upon confluence, however, the localization appeared to become predominantly plasma membrane. To assess the fusion activity of the proteins, the cell membranes were fractionated using sucrose density gradient centrifugation and the various fractions identified based on immunoreactivity in Western blot analysis with Golgi (anti-rab 6) or plasma membrane (anti-ZO-3) specific marker proteins. All membrane fractions were assayed for fusion with ROS plasma membrane vesicles. The plasma membrane enriched fractions (isolated at densities of 1.08 and 1.125 g ml-1) containing tagged peripherin/rds and the Δ10 mutant promoted membrane fusion with ROS plasma membrane vesicles. In contrast, fusion was not detected with plasma membrane vesicles from mock-transfected cells or the Δ50 peripherin/rds deletion mutant. Fusion was enhanced in a less dense fraction enriched in the P296T mutant (isolated from the 1.04/1.02 interface) relative to wt. Fusion was dependent on the presence of peripherin/rds in the membranes and could be inhibited with trypsinolysis and competition studies with the bovine fusion peptide, PP-5. Peptide competition suggests that the fusion domain of human peripherin/rds is most likely identical to that characterized in bovine and corresponds to amino acid residues 312-326. The C-terminal deletion mutants have allowed us to predict the minimal region of the C-terminus necessary for fusion to include residues starting at number 335. In addition a second region important in the formation of a fusion competent peripherin/rds has been mapped to a region upstream of the fusion peptide domain. © 2002 Elsevier Science Ltd

    ROM-1 Potentiates Photoreceptor Specific Membrane Fusion Processes

    Get PDF
    Photoreceptor outer segment (OS) renewal requires a series of tightly regulated membrane fusion events which are mediated by a fusion complex containing protein and lipid components. The best characterized of these components, is a unique photoreceptor specific tetraspanin, peripherin/rds (P/rds, a.k.a., peripherin-2, Rds and Prph). In these studies we investigated the role of peripherin\u27s non-glycosylated homolog, ROM-1, in OS fusion using a COS cell heterologous expression system and a well characterized cell free fusion assay system. Membranes isolated from COS-7 cells transfected with either FLAG-tagged P/rds or HA-tagged ROM-1 or both proteins were assayed for their ability to merge with fluorescently labeled OS plasma membrane (PM). Such membrane merger is one measure of membrane fusogenicity. The highest percent fusion was observed when the proteins were co-expressed. Furthermore detailed analysis of the fusion kinetics between fluorescently labeled PM and proteo-liposomes containing either, pure P/rds, pure ROM-1 or the ROM-1-P/rds complex clearly demonstrated that optimal fusion requires an ROM-1/P/rds complex. Proteo-liposomes composed of ROM-1 alone were not fusogenic. Peptide competition studies suggest that optimization of fusion may be due to the formation of a fusion competent peripherin/rds C-terminus in the presence of ROM-1. These studies provide further support for the hypothesis that a P/rds dependent membrane fusion complex is involved in photoreceptor renewal processes. © 2006 Elsevier Ltd. All rights reserved

    ROM-1 Potentiates Photoreceptor Specific Membrane Fusion Processes

    Get PDF
    Photoreceptor outer segment (OS) renewal requires a series of tightly regulated membrane fusion events which are mediated by a fusion complex containing protein and lipid components. The best characterized of these components, is a unique photoreceptor specific tetraspanin, peripherin/rds (P/rds, a.k.a., peripherin-2, Rds and Prph). In these studies we investigated the role of peripherin’s non-glycosylated homolog, ROM-1, in OS fusion using a COS cell heterologous expression system and a well characterized cell free fusion assay system. Membranes isolated from COS-7 cells transfected with either FLAG-tagged P/rds or HA-tagged ROM-1 or both proteins were assayed for their ability to merge with fluorescently labeled OS plasma membrane (PM). Such membrane merger is one measure of membrane fusogenicity. The highest percent fusion was observed when the proteins were co-expressed. Furthermore detailed analysis of the fusion kinetics between fluorescently labeled PM and proteo-liposomes containing either, pure P/rds, pure ROM-1 or the ROM-1-P/rds complex clearly demonstrated that optimal fusion requires an ROM-P/rds1 complex. Proteo-liposomes composed of ROM-1 alone were not fusogenic. Peptide competition studies suggest that optimization of fusion may be due to the formation of a fusion competent peripherin/rds C-terminus in the presence of ROM-1. These studies provide further support for the hypothesis that a P/rds dependent membrane fusion complex is involved in photoreceptor renewal processes

    A Peptide Analogue to a Fusion Domain Within Photoreceptor Peripherin/rds Promotes Membrane Adhesion and Depolarization

    Get PDF
    Photoreceptor peripherin/rds promotes membrane fusion, through a putative fusion domain located within the C-terminus (Boesze-Battaglia et al., Biochemistry 37 (1998) 9477-9487). A peptide analogue to this region, PP-5, competitively inhibits peripherin/rds mediated fusion in a cell free assay system. To characterize how this region is involved in the fusion process we investigated two of the individual steps in membrane fusion, membrane adhesion and membrane destabilization inferred from depolarization studies. Membrane depolarization was measured as the collapse of a valinomycin induced K+ diffusion potential in model membranes, using a potential sensitive fluorescent probe, diS-C2-5. PP-5 induced membrane depolarization in a concentration dependent manner. PP-5 has been shown by Fourier transform infrared spectroscopy to be an amphiphilic α-helix. Therefore, the requirement for an amphiphilic α-helix to promote depolarization was tested using two mutant peptides designed to disrupt either the amphiphilic nature of PP-5 (PP-5AB) or the α-helical structure (PP-5HB). PP-5AB inhibited PP-5 induced depolarization when added in an equimolar ratio to PP-5. Neither mutant peptide alone or in combination with PP-5 had any effect on calcium dependent vesicle aggregation. Using non-denaturing gel electrophoresis and size exclusion chromatography techniques PP-5 was shown to form a tetrameric complex. Equimolar mixtures of PP-5 and PP-5AB formed a heterotetramer which was unable to promote membrane depolarization. The hypothesis that PP-5 tetramers promote membrane depolarization is consistent with the calculated Hill coefficient of 3.725, determined from a Hill analysis of the depolarization data. Copyright (C) 2000 Elsevier Science B.V

    A Peptide Analogue to a Fusion Domain Within Photoreceptor Peripherin/rds Promotes Membrane Adhesion and Depolarization

    Get PDF
    Photoreceptor peripherin/rds promotes membrane fusion, through a putative fusion domain located within the C-terminus (Boesze-Battaglia et al., Biochemistry 37 (1998) 9477-9487). A peptide analogue to this region, PP-5, competitively inhibits peripherin/rds mediated fusion in a cell free assay system. To characterize how this region is involved in the fusion process we investigated two of the individual steps in membrane fusion, membrane adhesion and membrane destabilization inferred from depolarization studies. Membrane depolarization was measured as the collapse of a valinomycin induced K+ diffusion potential in model membranes, using a potential sensitive fluorescent probe, diS-C2-5. PP-5 induced membrane depolarization in a concentration dependent manner. PP-5 has been shown by Fourier transform infrared spectroscopy to be an amphiphilic α-helix. Therefore, the requirement for an amphiphilic α-helix to promote depolarization was tested using two mutant peptides designed to disrupt either the amphiphilic nature of PP-5 (PP-5AB) or the α-helical structure (PP-5HB). PP-5AB inhibited PP-5 induced depolarization when added in an equimolar ratio to PP-5. Neither mutant peptide alone or in combination with PP-5 had any effect on calcium dependent vesicle aggregation. Using non-denaturing gel electrophoresis and size exclusion chromatography techniques PP-5 was shown to form a tetrameric complex. Equimolar mixtures of PP-5 and PP-5AB formed a heterotetramer which was unable to promote membrane depolarization. The hypothesis that PP-5 tetramers promote membrane depolarization is consistent with the calculated Hill coefficient of 3.725, determined from a Hill analysis of the depolarization data. Copyright (C) 2000 Elsevier Science B.V

    A Peptide Analogue to a Fusion Domain Within Photoreceptor Peripherin/rds Promotes Membrane Adhesion and Depolarization

    Get PDF
    Photoreceptor peripherin/rds promotes membrane fusion, through a putative fusion domain located within the C-terminus (Boesze-Battaglia et al., Biochemistry 37 (1998) 9477-9487). A peptide analogue to this region, PP-5, competitively inhibits peripherin/rds mediated fusion in a cell free assay system. To characterize how this region is involved in the fusion process we investigated two of the individual steps in membrane fusion, membrane adhesion and membrane destabilization inferred from depolarization studies. Membrane depolarization was measured as the collapse of a valinomycin induced K+ diffusion potential in model membranes, using a potential sensitive fluorescent probe, diS-C2-5. PP-5 induced membrane depolarization in a concentration dependent manner. PP-5 has been shown by Fourier transform infrared spectroscopy to be an amphiphilic α-helix. Therefore, the requirement for an amphiphilic α-helix to promote depolarization was tested using two mutant peptides designed to disrupt either the amphiphilic nature of PP-5 (PP-5AB) or the α-helical structure (PP-5HB). PP-5AB inhibited PP-5 induced depolarization when added in an equimolar ratio to PP-5. Neither mutant peptide alone or in combination with PP-5 had any effect on calcium dependent vesicle aggregation. Using non-denaturing gel electrophoresis and size exclusion chromatography techniques PP-5 was shown to form a tetrameric complex. Equimolar mixtures of PP-5 and PP-5AB formed a heterotetramer which was unable to promote membrane depolarization. The hypothesis that PP-5 tetramers promote membrane depolarization is consistent with the calculated Hill coefficient of 3.725, determined from a Hill analysis of the depolarization data. Copyright (C) 2000 Elsevier Science B.V

    A Peptide Analogue to a Fusion Domain Within Photoreceptor Peripherin/rds Promotes Membrane Adhesion and Depolarization

    Get PDF
    Photoreceptor peripherin/rds promotes membrane fusion, through a putative fusion domain located within the C-terminus (Boesze-Battaglia et al., Biochemistry 37 (1998) 9477-9487). A peptide analogue to this region, PP-5, competitively inhibits peripherin/rds mediated fusion in a cell free assay system. To characterize how this region is involved in the fusion process we investigated two of the individual steps in membrane fusion, membrane adhesion and membrane destabilization inferred from depolarization studies. Membrane depolarization was measured as the collapse of a valinomycin induced K+ diffusion potential in model membranes, using a potential sensitive fluorescent probe, diS-C2-5. PP-5 induced membrane depolarization in a concentration dependent manner. PP-5 has been shown by Fourier transform infrared spectroscopy to be an amphiphilic α-helix. Therefore, the requirement for an amphiphilic α-helix to promote depolarization was tested using two mutant peptides designed to disrupt either the amphiphilic nature of PP-5 (PP-5AB) or the α-helical structure (PP-5HB). PP-5AB inhibited PP-5 induced depolarization when added in an equimolar ratio to PP-5. Neither mutant peptide alone or in combination with PP-5 had any effect on calcium dependent vesicle aggregation. Using non-denaturing gel electrophoresis and size exclusion chromatography techniques PP-5 was shown to form a tetrameric complex. Equimolar mixtures of PP-5 and PP-5AB formed a heterotetramer which was unable to promote membrane depolarization. The hypothesis that PP-5 tetramers promote membrane depolarization is consistent with the calculated Hill coefficient of 3.725, determined from a Hill analysis of the depolarization data. Copyright (C) 2000 Elsevier Science B.V

    A Textured Silicon Calorimetric Light Detector

    Full text link
    We apply the standard photovoltaic technique of texturing to reduce the reflectivity of silicon cryogenic calorimetric light detectors. In the case of photons with random incidence angles, absorption is compatible with the increase in surface area. For the geometrically thin detectors studied, energy resolution from athermal phonons, dominated by position dependence, is proportional to the surface-to-volume ratio. With the CaWO4 scintillating crystal used as light source, the time constants of the calorimeter should be adapted to the relatively slow light-emission times.Comment: Submitted to Journal of Applied Physic

    Lipid levels are inversely associated with infectious and all-cause mortality: international MONDO study results.

    Get PDF
    Cardiovascular (CV) events are increased 36-fold in patients with end-stage renal disease. However, randomized controlled trials to lower LDL cholesterol (LDL-C) and serum total cholesterol (TC) have not shown significant mortality improvements. An inverse association of TC and LDL-C with all-cause and CV mortality has been observed in patients on chronic dialysis. Lipoproteins also may protect against infectious diseases. We used data from 37,250 patients in the international Monitoring Dialysis Outcomes (MONDO) database to evaluate the association between lipids and infection-related or CV mortality. The study began on the first day of lipid measurement and continued for up to 4 years. We applied Cox proportional models with time-varying covariates to study associations of LDL-C, HDL cholesterol (HDL-C), and triglycerides (TGs) with all-cause, CV, infectious, and other causes of death. Overall, 6,147 patients died (19.2% from CV, 13.2% from infection, and 67.6% from other causes). After multivariable adjustment, higher LDL-C, HDL-C, and TGs were independently associated with lower all-cause death risk. Neither LDL-C nor TGs were associated with CV death, and HDL-C was associated with lower CV risk. Higher LDL-C and HDL-C were associated with a lower risk of death from infection or other non-CV causes. LDL-C was associated with reduced all-cause and infectious, but not CV mortality, which resulted in the inverse association with all-cause mortality
    • …
    corecore