28 research outputs found

    Biomechanical Analysis of the Efficacy of Locking Plates during Cyclic Loading in Metacarpal Fractures

    Get PDF
    Purpose. To analyse the biomechanical characteristics of locking plates under cyclic loading compared to a nonlocking plate in a diaphyseal metacarpal fracture. Methods. Oblique diaphyseal shaft fractures in porcine metacarpal bones were created in a biomechanical fracture model. An anatomical reduction and stabilization with a nonlocking and a comparable locking plate in mono- or bicortical screw fixation followed. Under cyclic loading, the displacement, and in subsequent load-to-failure tests, the maximum load and stiffness were measured. Results. For the monocortical screw fixation of the locking plate, a similar displacement, maximum load, and stiffness could be demonstrated compared to the bicortical screw fixation of the nonlocking plate. Conclusions. Locking plates in monocortical configuration may function as a useful alternative to the currently common treatment with bicortical fixations. Thereby, irritation of the flexor tendons would be avoided without compromising the stability, thus enabling the necessary early functional rehabilitation

    Immunohistochemical and Molecular Characterization of the Human Periosteum

    Get PDF
    Purpose. The aim of the present study was to characterize the cell of the human periosteum using immunohistological and molecular methods. Methods. Phenotypic properties and the distribution of the cells within the different layers were investigated with immunohistochemical staining techniques and RT-PCR, focussing on markers for stromal stem cells, osteoblasts, osteoclasts and immune cells. Results. Immunohistochemical results revealed that all stained cells were located in the cambium layer and that most cells were positive for vimentin. The majority of cells consisted of stromal stem cells and osteoblastic precursor cells. The density increased towards the deeper layers of the cambium. In addition, cells positive for markers of the osteoblast, chondrocyte, and osteoclast lineages were found. Interestingly, there were MHC class II-expressing immune cells suggesting the presence of dendritic cells. Using lineage-specific primer pairs RT-PCR confirmed the immunofluorescence microscopy results, supporting that human periosteum serves as a reservoir of stromal stem cells, as well as cells of the osteoblastic, and the chondroblastic lineage, osteoclasts, and dendritic cells. Conclusion. Our work elucidates the role of periosteum as a source of cells with a high regenerative capacity. Undifferentiated stromal stem cells as well as osteoblastic precursor cells are dominating in the cambium layer. A new outlook is given towards an immune response coming from the periosteum as MHC II positive immune cells were detected

    Bunnell or cross-lock Bunnell suture for tendon repair? Defining the biomechanical role of suture pretension

    Get PDF
    Background Suture pretension during tendon repair is supposed to increase the resistance to gap formation. However, its effects on the Bunnell suture technique are unknown. The purpose of this study was to determine the biomechanical effects of suture pretension on the Bunnell and cross-lock Bunnell techniques for tendon repair. Methods Eighty porcine hindlimb tendons were randomly assigned to four different tendon repair groups: those repaired with or without suture pretension using either a simple Bunnell or cross-lock Bunnell technique. Pretension was applied as a 10 % shortening of the sutured tendon. After measuring the cross-sectional diameter at the repair site, static and cyclic biomechanical tests were conducted to evaluate the initial and 5-mm gap formation forces, elongation during cyclic loading, maximum tensile strength, and mode of failure. The suture failure mechanism was also separately assessed fluoroscopically in two tendons that were repaired with steel wire. Results Suture pretension was accompanied by a 10 to 15 % increase in the tendon diameter at the repair site. Therefore, suture pretension with the Bunnell and cross-lock Bunnell repair techniques noticeably increased the resistance to initial gap formation and 5-mm gap formation. The tension-free cross-lock Bunnell repair demonstrated more resistance to initial and 5-mm gap formation, less elongation, and higher maximum tensile strength than the tension-free Bunnell repair technique. The only difference between the tensioned cross-lock Bunnell and tensioned Bunnell techniques was a larger resistance to 5-mm gap formation with the cross-lock Bunnell technique. Use of the simple instead of cross-lock suture configuration led to failure by suture cut out, as demonstrated fluoroscopically. Conclusion Based on these results, suture pretension decreases gapping and elongation after tendon repair, and those effects are stronger when using a cross-lock, rather than a regular Bunnell suture. However, pretension causes an unfavorable increase in the tendon diameter at the repair site, which may adversely affect wound healing

    Suture material for flexor tendon repair: 3–0 V-Loc versus 3–0 Stratafix in a biomechanical comparison ex vivo

    Get PDF
    Background Barbed suture material offers the possibility of knotless flexor tendon repair, as suggested in an increasing number of biomechanical studies. There are currently two different absorbable barbed suture products available, V-Loc™ and Stratafix™, and both have not been compared to each other with regard to flexor tendon repair. The purpose of this study was to evaluate both suture materials for primary stability under static and cyclic loading in a biomechanical ex vivo model. Methods Forty fresh porcine flexor digitorum profundus tendons were randomized in two groups. A four-strand modified Kessler suture technique was used to repair the tendon either with a 3–0 V-Loc™ or 3–0 Stratafix™ without a knot. Parameters of interest were mode of failure, 2-mm gap formation force, displacement, stiffness and maximum load under static and cyclic testing. Results The maximum load was 42.3 ± 7.2 for the Stratafix™ group and 50.7 ± 8.8 N for the V-Loc™ group. Thus, the ultimate tensile strength was significantly higher for V-Loc™ (p < 0.05). The 2-mm gap occurred at 24.8 ± 2.04 N in the Stratafix™ group in comparison to 26.5 ± 2.12 N in the V-Loc™ group (n.s.). Displacement was 2.65 ± 0.56 mm in the V-Loc™ group and 2.71 ± 0.59 mm in the Stratafix™ group (n.s.). Stiffness was 4.24 ± 0.68 (N/mm) in the V-Loc™ group and 3.85 ± 0.55 (N/mm) the Stratafix™ group (n.s.). Those measured differences were not significant. Conclusion V-Loc™ demonstrates a higher maximum load in tendon reconstruction. The differences in 2-mm gap formation force, displacement and stiffness were not significant. Hereby, the V-Loc™ has an advantage when used as unidirectional barbed suture for knotless flexor tendon repair

    Novel adhesive mineral-organic bone cements based on phosphoserine and magnesium phosphates or oxides

    No full text
    Abstract Present surgical situations require a bone adhesive which has not yet been developed for use in clinical applications. Recently, phosphoserine modified cements (PMC) based on mixtures of o-phosphoserine (OPLS) and calcium phosphates, such as tetracalcium phosphate (TTCP) or α-tricalcium phosphate (α-TCP) as well as chelate setting magnesium phosphate cements have gained increasing popularity for their use as mineral bone adhesives. Here, we investigated new mineral-organic bone cements based on phosphoserine and magnesium phosphates or oxides, which possess excellent adhesive properties. These were analyzed by X-ray diffraction, Fourier infrared spectroscopy and electron microscopy and subjected to mechanical tests to determine the bond strength to bone after ageing at physiological conditions. The novel biomineral adhesives demonstrate excellent bond strength to bone with approximately 6.6–7.3 MPa under shear load. The adhesives are also promising due to their cohesive failure pattern and ductile character. In this context, the new adhesive cements are superior to currently prevailing bone adhesives. Future efforts on bone adhesives made from phosphoserine and Mg2+ appear to be very worthwhile. Graphical Abstrac

    Retroperitoneal arterial bleeding caused by an undisplaced conservatively treated hyperextension injury of the lumbar spine – A case report

    No full text
    Background: Hyperextension fractures of the thoracolumbar spine are commonly seen in ankylotic disorders due to the rigidity of the spine. The known complications include instability, neurological deficits and posttraumatic deformity but there is no report of a hemodynamic relevant arterial bleeding in undisplaced hyperextension fractures. An arterial bleeding poses a life-threatening complication and may be difficult to recognize in an ambulatory or clinical setting. Case presentation: A 78-year-old male was brought to the emergency department after suffering a domestic fall with incapacitating lower back pain. X-rays and a CT scan revealed an undisplaced L2 hyperextension fracture which was treated conservatively. 9 days after admission, the patient complained about unprecedented abdominal pain with a CT scan disclosing a 12 × 9 × 20 cm retroperitoneal hematoma on grounds of an active arterial bleeding from a branch of the L2 lumbar artery. Subsequently, access via lumbotomy, evacuation of the hematoma and insertion of a hemostatic agent was performed. The therapy concept of the L2 fracture remained conservatively. Conclusions: A secondary, retroperitoneal arterial bleeding after a conservatively treated undisplaced hyperextension fracture of the lumbar spine is a rare and severe complication that has not been described in literature yet and may be difficult to recognize. An early CT scan is recommended in case of a sudden onset of abdominal pain in these fractures to fasten treatment and hence decrease morbidity and mortality. Thus, this case report contributes to the awareness of this complication in a spine fracture type with increasing incidence and clinical relevance

    Low-profile double plating versus dorsal LCP in stabilization of the olecranon fractures

    No full text
    Introduction Proximal ulna fractures are common in orthopaedic surgery. Comminuted fractures require a high primary stability by the osteosynthesis, to allow an early functional rehabilitation as fast as possible, to reduce long-term limitations of range of motion. Classical dorsal plating is related to wound healing problems due to the prominence of the implant. New low-profile double plates are available addressing the soft tissue problems by positioning the plates at the medial and lateral side. This study analysed whether, under high loading conditions, these new double plates provide an equivalent stability as compared to the rigid olecranon locking compression plate (LCP). Materials and methods In Sawbones, Mayo Type IIB fractures were simulated and stabilized by plate osteosyntheses: In group one, two low-profile plates were placed. In group two, a single dorsal plate (LCP) was used. The bones was than cyclically loaded simulating flexion grades of 0°, 30°, 60° and 90° of the elbow joint with increasing tension forces (150 , 150 , 300 and 500 N). The displacement and fracture gap movement were recorded. In the end, in load-to-failure tests, load at failure and mode of failure were determined. Results No significant differences were found for the displacement and fracture gap widening during cyclic loading. Under maximum loading, the double plates revealed a comparable load at failure like the single dorsal plate (LCP). The double plates failed with a proximal screw pull-out of the plate, whereas in the LCP group, in 10 out of 12 specimens the mode of failure was a diaphyseal shaft fracture at the distal plate peak. Conclusion Biomechanically, the double plates are a good alternative to the dorsal LCP providing a high stability under high loading conditions and, at the same, time reducing the soft tissue irritation by a lateral plate position

    Influence of Tranexamic Acid on Elution Characteristics and Compressive Strength of Antibiotic-Loaded PMMA-Bone Cement with Gentamicin

    No full text
    Purpose: The topical application of tranexamic acid (TXA) into the joint space during total joint arthroplasty (TJA) with no increase of complications, has been widely reported. We investigated the influence of TXA on antibiotic release, activity of the released antibiotic against a clinical isolate of S. aureus, and compressive strength of a widely used commercially prepared gentamicin-loaded cement brand (PALACOS R + G). Method: 12 bone cement cylinders (diameter and height = 6 and 12 mm, respectively) were molded. After curing in air for at least 1 h, six of the cylinders were completely immersed in 5 mL of fetal calf serum (FCS) and the other six were completely immersed in a solution consisting of 4.9 mL of FCS and 0.1 mL (10 mg) of TXA. Gentamicin elution tests were performed over 7 d. Four hundred µL of the gentamicin eluate were taken every 24 h for the first 7 d without renewing the immersion fluid. The gentamicin concentration was determined in a clinical analyzer using a homogeny enzyme immuno-assay. The antimicrobial activity of the eluate, obtained after day 7, was tested. An agar diffusion test regime was used with Staphylococcus aureus. Bacteria were grown in a LB medium and plated on LB agar plates to get a bacterial lawn. Fifty µL of each eluate were pipetted on 12-mm diameter filter discs, which were placed in the middle of the agar gel. After 24 h of cultivation at 37 °C, the zone of inhibition (ZOI) for each specimen was measured. The compressive strength of the cements was determined per ISO 5833. Results: At each time point in the gentamicin release test, the difference in gentamicin concentration, obtained from specimens immersed in the FCS solution only and those immersed in the FCS + TXA solution was not significant (p = 0.055–0.522). The same trend was seen in each of the following parameters, after 7 d of immersion: (1) Cumulative gentamicin concentration (p 20 mm) (p = 0.631); and (4) compressive strength (p = 0.262). Conclusions: For the PALACOS R + G specimens, the addition of TXA to FCS does not produce significant decreases in gentamicin concentration, in the activity of the gentamicin eluate against a clinical isolate of S. aureus, the zone of inhibition of S. aureus, and in the compressive strength of the cement, after 7 d of immersion in the test solution
    corecore