28 research outputs found

    A novel splice variant of the protein tyrosine phosphatase PTPRJ that encodes for a soluble protein involved in angiogenesis

    Get PDF
    PTPRJ is a receptor protein tyrosine phosphatase with tumor suppressor activity. Very little is known about the role of PTPRJ ectodomain, although recently both physiological and synthetic PTPRJ ligands have been identified. A putative shorter spliced variant, coding for a 539 aa protein corresponding to the extracellular N-terminus of PTPRJ, is reported in several databases but, currently, no further information is available. Here, we confirmed that the PTPRJ short isoform (named sPTPRJ) is a soluble protein secreted into the supernatant of both endothelial and tumor cells. Like PTPRJ, also sPTPRJ undergoes post-translational modifications such as glycosylation, as assessed by sPTPRJ immunoprecipitation. To characterize its functional activity, we performed an endothelial cell tube formation assay and a wound healing assay on HUVEC cells overexpressing sPTPRJ and we found that sPTPRJ has a proangiogenic activity. We also showed that sPTPRJ expression down-regulates endothelial adhesion molecules, that is a hallmark of proangiogenic activity. Moreover, sPTPRJ mRNA levels in human high-grade glioma, one of the most angiogenic tumors, are higher in tumor samples compared to controls. Further studies will be helpful not only to clarify the way sPTPRJ works but also to supply clues to circumvent its activity in cancer therapy

    Challenges in the management of chronic wound infections.

    Get PDF
    ABSTRACT Objectives Chronic wound infections may delay the healing process and are responsible for a significant burden on healthcare systems. Since inappropriate management may commonly occur in the care of these patients, this review aims to provide a practical guide underlining actions to avoid in the management of chronic wound infections. Methods We performed a systematic review of the literature available in PubMed in the last 10 years, identifying studies regarding the management of patients with chronic wound infections. A panel of experts discussed the potential malpractices in this area. A list of 'Don'ts', including the main actions to be avoided, was drawn up using the 'Choosing Wisely' methodology. Results In this review, we proposed a list of actions to avoid for optimal management of patients with chronic wound infections. Adequate wound bed preparation and wound antisepsis should be combined, as the absence of one of them leads to delayed healing and a higher risk of wound complications. Moreover, avoiding inappropriate use of systemic antibiotics is an important point because of the risk of selection of multidrug-resistant organisms as well as antibiotic-related adverse events. Conclusion A multidisciplinary team of experts in different fields (surgeon, infectious disease expert, microbiologist, pharmacologist, geriatrician) is required for the optimal management of chronic wound infections. Implementation of this approach may be useful to improve the management of patients with chronic wound infections

    Generation of iPSC lines from two patients affected by febrile seizure due to inherited missense mutation in SCN1A gene.

    Get PDF
    Abstract Here, we described the generation of human induced pluripotent stem cell lines (hiPSCs) from fibroblasts isolated by punch biopsies of two siblings carrying inherited mutation (c.434 T > C) in the SCN1A gene, encoding for the neuronal voltage gated sodium channel NaV1.1. The mutation leads to the substitution of a highly conserved methionine with a threonine (M145T) in the protein sequence, leading to infant febrile seizures (FS). The older brother, affected by complex FS, also developed temporal lobe epilepsy (TLE) during adolescence

    Leptin induces the generation of procoagulant, tissue factor bearing microparticles by human peripheral blood mononuclear cells

    Get PDF
    Obesity is linked to increased thrombotic risk. Circulating leptin concentration correlates with body mass index. Microparticles are small (.05-1μm) vesicles shed by activated and apoptotic cells, involved in numerous pathophysiologically relevant phenomena including blood coagulation and thrombosis. We tested the hypothesis that leptin induces the shedding of procoagulant, tissue factor bearing microparticles by human peripheral blood mononuclear cells, and investigated the intracellular mechanisms leading to microparticle release upon incubation with leptin

    Modeling Cardiac Disease Mechanisms Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Progress, Promises and Challenges

    No full text
    Cardiovascular diseases (CVDs) are a class of disorders affecting the heart or blood vessels. Despite progress in clinical research and therapy, CVDs still represent the leading cause of mortality and morbidity worldwide. The hallmarks of cardiac diseases include heart dysfunction and cardiomyocyte death, inflammation, fibrosis, scar tissue, hyperplasia, hypertrophy, and abnormal ventricular remodeling. The loss of cardiomyocytes is an irreversible process that leads to fibrosis and scar formation, which, in turn, induce heart failure with progressive and dramatic consequences. Both genetic and environmental factors pathologically contribute to the development of CVDs, but the precise causes that trigger cardiac diseases and their progression are still largely unknown. The lack of reliable human model systems for such diseases has hampered the unraveling of the underlying molecular mechanisms and cellular processes involved in heart diseases at their initial stage and during their progression. Over the past decade, significant scientific advances in the field of stem cell biology have literally revolutionized the study of human disease in vitro. Remarkably, the possibility to generate disease-relevant cell types from induced pluripotent stem cells (iPSCs) has developed into an unprecedented and powerful opportunity to achieve the long-standing ambition to investigate human diseases at a cellular level, uncovering their molecular mechanisms, and finally to translate bench discoveries into potential new therapeutic strategies. This review provides an update on previous and current research in the field of iPSC-driven cardiovascular disease modeling, with the aim of underlining the potential of stem-cell biology-based approaches in the elucidation of the pathophysiology of these life-threatening diseases

    Pirfenidone inhibits p38-mediated generation of procoagulant microparticles by human alveolar epithelial cells

    No full text
    Pirfenidone is a drug recently approved for idiopathic pulmonary fibrosis but its mechanisms of action are partially unknown. We have previously demonstrated that the airways of patients with idiopathic pulmonary fibrosis contain procoagulant microparticles that activate coagulation factor X to its active form, Xa, a proteinase that signals fibroblast growth and differentiation, thus potentially contributing to the pathogenesis of the disease. We also reported that in vitro exposure of human alveolar cells to H2O2 causes microparticle generation. Since p38 activation is involved in microparticle generation in some cell models and p38 inhibition is one of the mechanisms of action of pirfenidone, we investigated the hypothesis that H2O2-induced generation of microparticles by alveolar cells is dependent on p38 phosphorylation and is inhibited by pirfenidone. H2O2 stimulation of alveolar cells caused p38 phosphorylation that was inhibited by pirfenidone. The drug also inhibited H2O2 induced microparticle generation as assessed by two independent methods (solid phase thrombin generation and flow cytometry). The shedding of microparticle-bound tissue factor activity was also inhibited by pirfenidone. Inhibition of p38-mediated generation of procoagulant microparticle is a previously unrecognized mechanism of action of the antifibrotic drug, pirfenidone

    Extensive characterization of stem cells derived from skin

    No full text

    Insights into the Genetic Profile of Two Siblings Affected by Unverricht-Lundborg Disease Using Patient-Derived hiPSCs

    No full text
    Unverricht-Lundborg disease (ULD), also known as progressive myoclonic epilepsy 1 (EPM1), is a rare autosomal recessive neurodegenerative disorder characterized by a complex symptomatology that includes action- and stimulus-sensitive myoclonus and tonic-clonic seizures. The main cause of the onset and development of ULD is a repeat expansion of a dodecamer sequence localized in the promoter region of the gene encoding cystatin B (CSTB), an inhibitor of lysosomal proteases. Although this is the predominant mutation found in most patients, the physio-pathological mechanisms underlying the disease complexity remain largely unknown. In this work, we used patient-specific iPSCs and their neuronal derivatives to gain insight into the molecular and genetic machinery responsible for the disease in two Italian siblings affected by different phenotypes of ULD. Specifically, fragment length analysis on amplified CSTB promoters found homozygous status for dodecamer expansion in both patients and showed that the number of dodecamer repeats is the same in both. Furthermore, the luciferase reporter assay showed that the CSTB promoter activity was similarly reduced in both lines compared to the control. This information allowed us to draw important conclusions: (1) the phenotypic differences of the patients do not seem to be strictly dependent on the genetic mutation around the CSTB gene, and (2) that some other molecular mechanisms, not yet clearly identified, might be taken into account. In line with the inhibitory role of cystatin B on cathepsins, molecular investigations performed on iPSCs-derived neurons showed an increased expression of lysosomal cathepsins (B, D, and L) and a reduced expression of CSTB protein. Intriguingly, the increase in cathepsin expression does not appear to be correlated with the residual amount of CSTB, suggesting that other mechanisms, in addition to the regulation of cathepsins, could be involved in the pathological complexity of the disease

    CD 18-mediated adhesion is required for the induction of a proinflammatory phenotype in lung epithelial cells by mononuclear cell-derived extracellular vesicles

    No full text
    Extracellular vesicles are submicron vesicles that upregulate the synthesis of proinflammatory mediators by lung epithelial cells. We investigated whether these structures adhere to lung epithelial cells, and whether adhesion is a prerequisite for their proinflammatory activity. Extracellular vesicles were generated by stimulation of normal human mononuclear cells with the calcium ionophore A23187, and labelled with carboxyfluorescein diacetate succinimidyl ester. Adhesion of vesicles to monolayers of immortalized bronchial epithelial (16HBE) and alveolar (A549) cells was analysed by fluorescence microscopy. The role of candidate adhesion receptors was evaluated with inhibitory monoclonal antibodies and soluble peptides. The synthesis of proinflammatory mediators was assessed by ELISA. Transmission electron microscopy confirmed the generation of closed vesicles with an approximate size range between 50 and 600nm. Adhesion of extracellular vesicles to epithelial cells was upregulated upon stimulation of the latter with tumour necrosis factor-α. Adhesion was blocked by an anti-CD18 antibody, by peptides containing the sequence RGD and, to a lesser extent, by an antibody to ICAM-1. The same molecules also blocked the upregulation of the synthesis of interleukin-8 and monocyte chemotactic protein-1 induced by extracellular vesicles. CD18-mediated adhesion of extracellular vesicles is a prerequisite for their proinflammatory activity

    Two sides of the same coin? Unraveling subtle differences between human embryonic and induced pluripotent stem cells by Raman spectroscopy

    No full text
    Abstract Background Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, hold enormous promise for many biomedical applications, such as regenerative medicine, drug testing, and disease modeling. Although induced pluripotent stem cells resemble embryonic stem cells both morphologically and functionally, the extent to which these cell lines are truly equivalent, from a molecular point of view, remains controversial. Methods Principal component analysis and K-means cluster analysis of collected Raman spectroscopy data were used for a comparative study of the biochemical fingerprint of human induced pluripotent stem cells and human embryonic stem cells. The Raman spectra analysis results were further validated by conventional biological assays. Results Raman spectra analysis revealed that the major difference between human embryonic stem cells and induced pluripotent stem cells is due to the nucleic acid content, as shown by the strong positive peaks at 785, 1098, 1334, 1371, 1484, and 1575 cm–1, which is enriched in human induced pluripotent stem cells. Conclusions Here, we report a nonbiological approach to discriminate human induced pluripotent stem cells from their native embryonic stem cell counterparts
    corecore