6 research outputs found

    Useful Access to Uncommon Thiazolo[3,2‑<i>a</i>]indoles

    No full text
    A practical and environmentally benign protocol for the assembly of poly substituted-thiazolo[3,2-a]indoles from 3-alkylated indoline-2-thiones and 2-halo-ketones has been developed. This metal-free approach consists in a complete chemo/regioselective formal [3 + 2] annulation that occurs in air, at 60 °C, and in water as the sole reaction medium. The opportunity to vary the substitution pattern up to six different positions, odorless manipulation of sulfurylated compounds, very easy product isolation, and mild reaction conditions are the main synthetic features of this method. The scaled-up experiment and the successive transformations of the products further demonstrate the utility of this chemistry

    Tandem Aza-Wittig/Carbodiimide-Mediated Annulation Applicable to 1,2-Diaza-1,3-dienes for the One-Pot Synthesis of Fully Substituted 1,2-Diaminoimidazoles

    No full text
    One-pot sequential aza-Michael, Staudinger, and aza-Wittig reactions on 1,2-diaza-1,2-dienes (DDs) can afford fully substituted 1,2-diaminoimidazoles. A plausible mechanism for the imidazole core formation involving an intramolecular ring closure of the carbodiimide-derived phosphazene intermediate is given. The reported strategy has sufficient flexibility to allow substituted 1,2-diaminoimidazoles with orthogonal nitrogen-protective groups to be generated from a variety of heterocumulene moieties linked to the DDs skeleton

    Effect of Hydrogenated Cardanol on the Structure of Model Membranes Studied by EPR and NMR

    No full text
    Hydrogenated cardanol (HC) is known to act as an antiobesity, promising antioxidant, and eco-friendly brominating agent. In this respect, it is important to find the way to transport and protect HC into the body; a micellar structure works as the simplest membrane model and may be considered a suitable biocarrier for HC. Therefore, it is useful to analyze the impact of HC in the micellar structure and properties. This study reports a computer aided electron paramagnetic resonance (EPR) and <sup>1</sup>H NMR investigation of structural variations of cetyltrimetylammonium bromide (CTAB) micelles upon insertion of HC at different concentrations and pH variations. Surfactant spin probes inserted in the micelles allowed us to get information on the structure and dynamics of the micelles and the interactions between HC and CTAB. The formation of highly packed HC-CTAB mixed micelles were favored by the occurrence of both hydrophobic (chain–chain) and hydrophilic (between the polar and charged lipid heads) interactions. These interactions were enhanced by neutralization of the acidic HC heads. Different HC localizations into the micelles and micellar structures were identified by changing HC/CTAB relative concentrations and pH. The increase in HC concentration generated mixed micelles characterized by an increased surfactant packing. These results suggested a rod-like shape of the mixed micelles. The increase in pH promoted the insertion of deprotonated HC into less packed micelles, favored by the electrostatic head–head interactions between CTAB and deprotonated-HC surfactants

    Powerful Approach to Heterocyclic Skeletal Diversity by Sequential Three-Component Reaction of Amines, Isothiocyanates, and 1,2-Diaza-1,3-dienes

    No full text
    By highly efficient, one-pot, three-component reactions, combining one set of 1,2-diaza-1,3-dienes (DDs), primary amines, and isothiocyanates in a different sequential order of addition, heterocyclic skeletal diversity can be achieved. The key feature discriminating the different heterocyclic core formation is the availability of the <i>N</i> or <i>S</i> heteronucleophile to give the first Michael addition step affording regioselective substituted 2-thiohydantoins or 2-iminothiazolidinones. The hydrazone or enehydrazino side chain at the 5-position of both heterocycles represents a valuable functionality to reach novel 5-hydroxyethylidene derivatives difficult to obtain by other methods

    Effect of Hydrogenated Cardanol on the Structure of Model Membranes Studied by EPR and NMR

    No full text
    Hydrogenated cardanol (HC) is known to act as an antiobesity, promising antioxidant, and eco-friendly brominating agent. In this respect, it is important to find the way to transport and protect HC into the body; a micellar structure works as the simplest membrane model and may be considered a suitable biocarrier for HC. Therefore, it is useful to analyze the impact of HC in the micellar structure and properties. This study reports a computer aided electron paramagnetic resonance (EPR) and <sup>1</sup>H NMR investigation of structural variations of cetyltrimetylammonium bromide (CTAB) micelles upon insertion of HC at different concentrations and pH variations. Surfactant spin probes inserted in the micelles allowed us to get information on the structure and dynamics of the micelles and the interactions between HC and CTAB. The formation of highly packed HC-CTAB mixed micelles were favored by the occurrence of both hydrophobic (chain–chain) and hydrophilic (between the polar and charged lipid heads) interactions. These interactions were enhanced by neutralization of the acidic HC heads. Different HC localizations into the micelles and micellar structures were identified by changing HC/CTAB relative concentrations and pH. The increase in HC concentration generated mixed micelles characterized by an increased surfactant packing. These results suggested a rod-like shape of the mixed micelles. The increase in pH promoted the insertion of deprotonated HC into less packed micelles, favored by the electrostatic head–head interactions between CTAB and deprotonated-HC surfactants

    Divergent Approach to Thiazolylidene Derivatives: A Perspective on the Synthesis of a Heterocyclic Skeleton from β‑Amidothioamides Reactivity

    No full text
    Herein we report a domino protocol able to reach regioselectively thiazolylidene systems by combining the reactive peculiarities of both β-amidothioamides (ATAs) and 1,2-diaza-1,3-dienes (DDs). Depending on the reaction conditions and/or the nature of the residue at C4 of the heterodiene system, ATAs can act as hetero-mononucleophiles or hetero-dinucleophiles in the diversified thiazolylidene ring assembly
    corecore