13 research outputs found

    A durum wheat recombinant inbred line (RIL) population: Data on β-glucans, grain protein content, grain yield per spike, and heading time

    Get PDF
    Data presented are on genetic variation of quality trait and production in a recombinant inbred line (RIL) population derived from a cross between two elite durum wheat cultivars grown in two different locations (Valenzano, metropolitan city of Bari -Italy) and Policoro (metropolitan city of Matera – Italy). The data of the two environment include: 1. β-glucan content; 2. grain protein content; 3. grain yield per spike; 4. heading time. In addition data on high-density SNP-based genetic linkage map and linkage analysis are reported. The data in this article support and augment information presented in the research article “Development of a high-density SNP-based linkage map and detection of QTL for β-glucans, protein content, grain yield per spike and heading time in durum wheat” (Int J Mol Sci. 18(6):1329, 2017, https://doi.org/10.3390/ijms18061329)

    Mapping QTLs for Fusarium head blight resistance in an interspecific wheat population

    Get PDF
    Fusarium head blight (scab) is one of the most widespread and damaging diseases of wheat, causing grain yield and quality losses and production of harmful mycotoxins. Development of resistant varieties is hampered by lack of effective resistance sources in the tetraploid wheat primary gene pool. Here we dissected the genetic basis of resistance in a new durum wheat (Triticum turgidum ssp. durum) Recombinant inbred lines (RILs) population obtained by crossing an hexaploid resistant line and a durum susceptible cultivar. A total of 135 RILs were used for constituting a genetic linkage map and mapping loci for head blight incidence, severity, and disease-related plant morphological traits (plant height, spike compactness, and awn length). The new genetic map accounted for 4,366 single nucleotide polymorphism markers assembled in 52 linkage groups covering a total length of 4,227.37 cM. Major quantitative trait loci (QTL) for scab incidence and severity were mapped on chromosomes 2AS, 3AL, and 2AS, 2BS, 4BL, respectively. Plant height loci were identified on 3A, 3B, and 4B, while major QTL for ear compactness were found on 4A, 5A, 5B, 6A, and 7A. In this work, resistance to Fusarium was transferred from hexaploid to durum wheat, and correlations between the disease and morphological traits were assessed

    Glutamine synthetase in durum wheat: Genotypie variation and relationship with grain protein content

    Get PDF
    Grain protein content (GPC), is one of the most important trait in wheat and its characterized by a very complex genetic control. The identification of wheat varieties with high GPC (HGPC), as well as the characterization of central enzymes involved in these processes, are important for more sustainable agricultural practices. In this study, we focused on Glutamine synthetase (GS) as a candidate to study GPC in wheat. We analyzed GS expression and its enzymatic activity in different tissues and phenological stages in 10 durum wheat genotypes with different GPC. Although each genotype performed quite differently from the others, both because their genetic variability and their adaptability to specific environmental conditions, the highest GS activity and expression were found in genotypes with HGPC and vice versa the lowest ones in genotypes with low GPC (LGPC). Moreover, in genotypes contrasting in GPC bred at different nitrogen regimes (0, 60, 140 N Unit/ha) GS behaved differently in diverse organs. Nitrogen supplement increased GS expression and activity in roots of all genotypes, highlighting the key role of this enzyme in nitrogen assimilation and ammonium detoxification in roots. Otherwise, nitrogen treatments decreased GS expression and activity in the leaves of HGPC genotypes and did not affect GS in the leaves of LGPC genotypes. Finally, no changes in GS and soluble protein content occurred at the filling stage in the caryopses of all analyzed genotypes

    Sicilia—silicon carbide detectors for intense luminosity investigations and applications

    Get PDF
    Silicon carbide (SiC) is a compound semiconductor, which is considered as a possible alternative to silicon for particles and photons detection. Its characteristics make it very promising for the next generation of nuclear and particle physics experiments at high beam luminosity. Silicon Carbide detectors for Intense Luminosity Investigations and Applications (SiCILIA) is a project starting as a collaboration between the Italian National Institute of Nuclear Physics (INFN) and IMM-CNR, aiming at the realization of innovative detection systems based on SiC. In this paper, we discuss the main features of silicon carbide as a material and its potential application in the field of particles and photons detectors, the project structure and the strategies used for the prototype realization, and the first results concerning prototype production and their performance

    Datasets for grain protein content, yield-related traits, and candidate genes in a durum wheat RIL population derived from a “hexaploid × tetraploid” interspecific cross

    No full text
    Data described in this article refer to the evaluation of genetic variability for quantity (grain protein content, GPC) and composition (HMW-glutenin subunits and gliadins) of seed storage proteins, and two yield components (grain yield per spike, GYS, and thousand-kernel weight, TKW) in a durum wheat recombinant inbred line (RIL) population derived by an interspecific cross between the common wheat accession 02-5B-318 and the durum cv. Saragolla. This article provides datasets relative to GPC, GYS and TKW collected in the two parents and in 135 durum RIL progenies from plants grown in field trials conducted in Valenzano (Metropolitan City of Bari, BA, Italy) by a randomized complete block design with three replicates. Data on GPC were acquired from Near-Infrared Reflectance on whole-meal flour and are expressed as percentage of proteins on a dry weight basis. Data relative to composition of seed storage proteins refer to high molecular weight glutenin subunits (encoded by Glu-A1 and Glu-B1 loci) and gliadins (encoded by Gli-B1 locus) extracted from whole-grain samples and identified based on their electrophoretic relative mobility on SDS-PAGE. This paper also provides datasets for the detection of quantitative trait loci (QTLs) for GPC, GYS, TKW on a durum wheat genetic linkage map previously developed in the same durum population genotyped with the Illumina 90 K iSelect SNP array. The present article finally supports information for the identification of candidate genes related to wheat grain quantity, composition, and yield by providing data relative to all the SNP markers mapped in the QTL confidence intervals for each trait of interest (GPC, GYS, TKW). Data described in this paper support the published original research article titled "Genetic variation for protein content and yield-related traits in a durum population derived from an inter-specific cross between hexaploid and tetraploid wheat cultivars" (Giancaspro et al., 2019)

    Exploring <i>Aegilops caudata</i>: A Comprehensive Study of the <i>CslF6</i> Gene and β-Glucan

    No full text
    In the quest for sustainable and nutritious food sources, exploration of ancient grains and wild relatives of cultivated cereals has gained attention. Aegilops caudata, a wild wheatgrass species, stands out as a promising genetic resource due to its potential for crop enhancement and intriguing nutritional properties. This manuscript investigates the CslF6 gene sequence and protein structure of Aegilops caudata, employing comparative analysis with other grass species to identify potential differences impacting β-glucan content. The study involves comprehensive isolation and characterization of the CslF6 gene in Ae. caudata, utilizing genomic sequence analysis, protein structure prediction, and comparative genomics. Comparisons with sequences from diverse monocots reveal evolutionary relationships, highlighting high identities with wheat genomes. Specific amino acid motifs in the CslF6 enzyme sequence, particularly those proximal to key catalytic motifs, exhibit variations among monocot species. These differences likely contribute to alterations in β-glucan composition, notably impacting the DP3:DP4 ratio, which is crucial for understanding and modulating the final β-glucan content. The study positions Ae. caudata uniquely within the evolutionary landscape of CslF6 among monocots, suggesting potential genetic divergence or unique functional adaptations within this species. Overall, this investigation enriches our understanding of β-glucan biosynthesis, shedding light on the role of specific amino acid residues in modulating enzymatic activity and polysaccharide composition

    Dataset from RNAseq analysis of bud differentiation in Ficus carica

    No full text
    The presented data regards the transcriptome profiling and differential analysis with RNA-Seq approach with the following goals: de novo transcriptome assembly and genome an-notation of Ficus carica and the differential expression analysis of parthenocarpic and non-partenocarpic varieties in or-der to identify candidate genes for the production of seed-less fig. Two fig varieties Dottato and Petrelli and the caprifig were grown at the fig repository at the 'P. Martucci' experimental station in Valenzano (Bari) of University of Bari 'Aldo Moro'.The data included: RNA-seq data obtained from fruits of parthenocarpic and non-parthenocarpic varieties, gene expression in the different genetic materials; genes up and down regulated.The data in this article support information presented in the research article "I. Marcotuli, A. Mazzeo, P. Colasuonno, R. Terzano, D. Nigro, C. Porfido, A. Tarantino, R. Aiese Cigliano, W. Sanseverino, A. Gadaleta, G. Ferrara, Fruit Development in Ficus carica L.: Morphological and Genetic Approaches to Fig Buds for an Evolution From Monoecy Toward Dioecy. Front. Plant Sci.(2020) 11:1208. doi: 10.3389/fpls.2020.01208Published by Elsevier Inc.This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/

    Datasets for genetic diversity assessment in a collection of wild and cultivated pomegranates (Punica granatum L.) by microsatellite markers

    No full text
    Data described in this article refer to molecular charac-terization and assessment of genetic diversity within a wide collection of pomegranate genotypes including both selections and cultivars from different geographical ori-gin/disseminations by using microsatellite (SSR, Simple Se-quence Repeats) markers. Supplied datasets refer to a set of 63 genotypes including 55 accessions (landraces) from Italy, Turkmenistan, Japan, and USA and 8 cultivars from Is-rael, established at the pomegranate repository of the Fruit Tree Unit of the Department of Soil, Plant and Food Science at University of Bari "Aldo Moro", Italy. Pomegranate acces-sions differed for end-use purpose (edible, ornamental) and some morpho-pomological traits including juice taste, inner tegmen hardness, and skin/seed color. Molecular data were opportunely employed to build a similarity matrix to estab-lish phylogenetic relationships (genetic similarity and dis-tances) among pomegranate accessions and compare genetic clustering to morpho-pomological classification.The present data article provides detailed information and methodological protocols on SSR markers, PCR amplification and banding profiling aimed to molecular characterization of pomegranate collection. This latter was conducted by am-plifying a set of informative polymorphic SSR markers on the genomic DNA of each pomegranate accession, and then comparing the different molecular profiles by capillary elec-trophoresis. The banding patterns obtained from microsatel-lite markers were used to build a binary matrix containing the scores for each individual SSR fragment, which was trans-formed into a similarity matrix and finally used for clus-ter analysis and dendrogram building based on the UPGMA algorithm. This paper supplies data potentially useful for the identification of polymorphic markers suitable for vari-etal identification and traceability, or discrimination between tightly related pomegranate accessions with very high mor-phological similarity and/or geographical identity. Data described in this paper support the published original research article titled "Exploiting DNA-based molecular tools to assess genetic diversity in pomegranate (Punica granatum L.) selections and cultivars" [1].&amp; COPY; 2023 The Author(s). Published by Elsevier Inc.This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/
    corecore