252 research outputs found

    Exploiting non-constant safe memory in resilient algorithms and data structures

    Get PDF
    We extend the Faulty RAM model by Finocchi and Italiano (2008) by adding a safe memory of arbitrary size SS, and we then derive tradeoffs between the performance of resilient algorithmic techniques and the size of the safe memory. Let δ\delta and α\alpha denote, respectively, the maximum amount of faults which can happen during the execution of an algorithm and the actual number of occurred faults, with αδ\alpha \leq \delta. We propose a resilient algorithm for sorting nn entries which requires O(nlogn+α(δ/S+logS))O\left(n\log n+\alpha (\delta/S + \log S)\right) time and uses Θ(S)\Theta(S) safe memory words. Our algorithm outperforms previous resilient sorting algorithms which do not exploit the available safe memory and require O(nlogn+αδ)O\left(n\log n+ \alpha\delta\right) time. Finally, we exploit our sorting algorithm for deriving a resilient priority queue. Our implementation uses Θ(S)\Theta(S) safe memory words and Θ(n)\Theta(n) faulty memory words for storing nn keys, and requires O(logn+δ/S)O\left(\log n + \delta/S\right) amortized time for each insert and deletemin operation. Our resilient priority queue improves the O(logn+δ)O\left(\log n + \delta\right) amortized time required by the state of the art.Comment: To appear in Theoretical Computer Science, 201

    The I/O Complexity of Hybrid Algorithms for Square Matrix Multiplication

    Get PDF
    Asymptotically tight lower bounds are derived for the I/O complexity of a general class of hybrid algorithms computing the product of n x n square matrices combining "Strassen-like" fast matrix multiplication approach with computational complexity Theta(n^{log_2 7}), and "standard" matrix multiplication algorithms with computational complexity Omega (n^3). We present a novel and tight Omega ((n/max{sqrt M, n_0})^{log_2 7}(max{1,(n_0)/M})^3M) lower bound for the I/O complexity of a class of "uniform, non-stationary" hybrid algorithms when executed in a two-level storage hierarchy with M words of fast memory, where n_0 denotes the threshold size of sub-problems which are computed using standard algorithms with algebraic complexity Omega (n^3). The lower bound is actually derived for the more general class of "non-uniform, non-stationary" hybrid algorithms which allow recursive calls to have a different structure, even when they refer to the multiplication of matrices of the same size and in the same recursive level, although the quantitative expressions become more involved. Our results are the first I/O lower bounds for these classes of hybrid algorithms. All presented lower bounds apply even if the recomputation of partial results is allowed and are asymptotically tight. The proof technique combines the analysis of the Grigoriev\u27s flow of the matrix multiplication function, combinatorial properties of the encoding functions used by fast Strassen-like algorithms, and an application of the Loomis-Whitney geometric theorem for the analysis of standard matrix multiplication algorithms. Extensions of the lower bounds for a parallel model with P processors are also discussed

    Progetto di ristrutturazione della rete informatica

    Get PDF

    Seismic Response of a Platform-Frame System with Steel Columns

    Get PDF
    Timber platform-frame shear walls are characterized by high ductility and diffuse energy dissipation but limited in-plane shear resistance. A novel lightweight constructive system composed of steel columns braced with oriented strand board (OSB) panels was conceived and tested. Preliminary laboratory tests were performed to study the OSB-to-column connections with self-drilling screws. Then, the seismic response of a shear wall was determined performing a quasi-static cyclic-loading test of a full-scale specimen. Results presented in this work in terms of force-displacement capacity show that this system confers to shear walls high in-plane strength and stiffness with good ductility and dissipative capacity. Therefore, the incorporation of steel columns within OSB bracing panels results in a strong and stiff platform-frame system with high potential for low- and medium-rise buildings in seismic-prone areas

    The DAG Visit Approach for Pebbling and I/O Lower Bounds

    Get PDF
    We introduce the notion of an r-visit of a Directed Acyclic Graph DAG G = (V,E), a sequence of the vertices of the DAG complying with a given rule r. A rule r specifies for each vertex v ? V a family of r-enabling sets of (immediate) predecessors: before visiting v, at least one of its enabling sets must have been visited. Special cases are the r^(top)-rule (or, topological rule), for which the only enabling set is the set of all predecessors and the r^(sin)-rule (or, singleton rule), for which the enabling sets are the singletons containing exactly one predecessor. The r-boundary complexity of a DAG G, b_r(G), is the minimum integer b such that there is an r-visit where, at each stage, for at most b of the vertices yet to be visited an enabling set has already been visited. By a reformulation of known results, it is shown that the boundary complexity of a DAG G is a lower bound to the pebbling number of the reverse DAG, G^R. Several known pebbling lower bounds can be cast in terms of the r^{(sin)}-boundary complexity. The main contributions of this paper are as follows: - An existentially tight ?(?{d_{out} n}) upper bound to the r^(sin)-boundary complexity of any DAG of n vertices and out-degree d_{out}. - An existentially tight ?(d_{out}/(log? d_{out}) log? n) upper bound to the r^(top)-boundary complexity of any DAG. (There are DAGs for which r^(top) provides a tight pebbling lower bound, whereas r^(sin) does not.) - A visit partition technique for I/O lower bounds, which generalizes the S-partition I/O technique introduced by Hong and Kung in their classic paper "I/O complexity: The Red-Blue pebble game". The visit partition approach yields tight I/O bounds for some DAGs for which the S-partition technique can only yield a trivial lower bound
    corecore