438 research outputs found

    Shape Isomerism at N = 40: Discovery of a Proton Intruder in 67Co

    Full text link
    The nuclear structure of 67Co has been investigated through 67Fe beta-decay. The 67Fe isotopes were produced at the LISOL facility in proton-induced fission of 238U and selected using resonant laser ionization combined with mass separation. The application of a new correlation technique unambiguously revealed a 496(33) ms isomeric state in 67Co at an unexpected low energy of 492 keV. A 67Co level scheme has been deduced. Proposed spin and parities suggest a spherical (7/2-) 67Co ground state and a deformed first excited (1/2-) state at 492 keV, interpreted as a proton 1p-2h prolate intruder state.Comment: 4 pages, 5 figures, preprint submitted to Physical Review Letter

    Nature of yrast excitations near N=40: Level structure of Ni-67

    Full text link
    Excited states in Ni-67 were populated in deep-inelastic reactions of a Ni-64 beam at 430 MeV on a thick U-238 target. A level scheme built on the previously known 13 micro-s isomer has been delineated up to an excitation energy of ~5.3 MeV and a tentative spin and parity of (21/2-). Shell model calculations have been carried out using two effective interactions in the f5/2pg9/2 model space with a Ni-56 core. Satisfactory agreement between experiment and theory is achieved for the measured transition energies and branching ratios. The calculations indicate that the yrast states are associated with rather complex configurations, herewith demonstrating the relative weakness of the N=40 subshell gap and the importance of multi particle-hole excitations involving the g9/2 neutron orbital.Comment: Accepted by Physical Review

    Coulomb excitation of 68^{68}Ni at safe energies

    Get PDF
    The B(E2;0+2+)B(E2;0^+\to2^+) value in 68^{68}Ni has been measured using Coulomb excitation at safe energies. The 68^{68}Ni radioactive beam was post-accelerated at the ISOLDE facility (CERN) to 2.9 MeV/u. The emitted γ\gamma rays were detected by the MINIBALL detector array. A kinematic particle reconstruction was performed in order to increase the measured c.m. angular range of the excitation cross section. The obtained value of 2.81.0+1.2^{+1.2}_{-1.0} 102^2 e2^2fm4^4 is in good agreement with the value measured at intermediate energy Coulomb excitation, confirming the low 0+2+0^+\to2^+ transition probability.Comment: 4 pages, 5 figure

    Coulomb excitation of 73Ga

    Full text link
    The B(E2; Ii -> If) values for transitions in 71Ga and 73Ga were deduced from a Coulomb excitation experiment at the safe energy of 2.95 MeV/nucleon using post-accelerated beams of 71,73Ga at the REX-ISOLDE on-line isotope mass separator facility. The emitted gamma rays were detected by the MINIBALL-detector array and B(E2; Ii->If) values were obtained from the yields normalized to the known strength of the 2+ -> 0+ transition in the 120Sn target. The comparison of these new results with the data of less neutron-rich gallium isotopes shows a shift of the E2 collectivity towards lower excitation energy when adding neutrons beyond N = 40. This supports conclusions from previous studies of the gallium isotopes which indicated a structural change in this isotopical chain between N = 40 and N = 42. Combined with recent measurements from collinear laser spectroscopy showing a 1/2- spin and parity for the ground state, the extracted results revealed evidence for a 1/2-; 3/2- doublet near the ground state in 73 31Ga42 differing by at most 0.8 keV in energy

    Processing of ultrafine-size particulate metal matrix composites by advanced shear technology

    Get PDF
    Copyright @ 2009 ASM International. This paper was published in Metallurgical & Materials Transactions A 40A(3) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Lack of efficient mixing technology to achieve a uniform distribution of fine-size reinforcement within the matrix and the high cost of producing components have hindered the widespread adaptation of particulate metal matrix composites (PMMCs) for engineering applications. A new rheo-processing method, the melt-conditioning high-pressure die-cast (MC-HPDC) process, has been developed for manufacturing near-net-shape components of high integrity. The MC-HPDC process adapts the well-established high shear dispersive mixing action of a twin-screw mechanism to the task of overcoming the cohesive force of the agglomerates under a high shear rate and high intensity of turbulence. This is followed by direct shaping of the slurry into near-net-shape components using an existing cold-chamber die-casting process. The results indicate that the MC-HPDC samples have a uniform distribution of ultrafine-sized SiC particles throughout the entire sample in the as-cast condition. Compared to those produced by conventional high-pressure die casting (HPDC), MC-HPDC samples have a much improved tensile strength and ductility.EP-SR
    corecore