10 research outputs found

    Level of sex hormones and their association with acetylsalicylic acid intolerance and nasal polyposis.

    No full text
    BackgroundChronic rhinosinusitis may be associated with nasal polyposis. Recurrence of disease is often observed and may be due to an intolerance of acetylsalicylic acid. Sex hormones are known to modulate allergic reactions and inflammation. Whether they may be involved in the development and progression of nasal polyposis has not been investigated yet.AimExamine the relationship between levels of sex hormones and nasal polyposis.MethodsHormonal levels (estradiol, testosterone and progesterone) in patients with nasal polyposis (n = 26) with or without acetylsalicylic acid-intolerance were determined and compared to hormonal levels in patients with septal deviation (n = 35). Cone-beam computed tomography scans were analysed by using scores as defined by Lund and Mackay and by Kennedy.ResultsOur results show a 5 times greater odds (p = 0.01) for developing nasal polyposis in the presence of lowered estradiol plasma levels than in the presence of normal / elevated levels. When analyzing females and males separately, a 6 times greater odds for females to develop nasal polyposis in the presence of lowered estradiol plasma levels was calculated (p = 0.02). Thus, females are more likely to develop nasal polyposis when they have lowered estradiol levels than males. In addition, female patients showed an increased risk for developing ASA intolerance (p = 0.01).ConclusionVariation of sex hormones may be involved in nasal polyposis. Further studies including more patients to validate the presented results are required.SignificanceRetrospective clinical investigation suggesting a correlation between varying sex hormones and nasal polyposis

    Cells labelled with MB grown on magnets.

    No full text
    <p>Immunomagnetically labelled NIH 3T3 fibroblasts (NIH 3T3+Thy1+MB) grown on cylindrically shaped magnets (borders outline in white; 6 mmx3 mm, LxD) cultivated in a Petri dish. Micrograph was taken 20 h after seeding. Magnification: 40x.</p

    Location of MB after incubation with cells for 48 h.

    No full text
    <p>AFM error signal (A) and phase contrast image (B) of a single fibroblast after 48 h incubation with magnetic beads, revealing several MB at its surface (white arrows) and other MB positioned within the cell. Fig 6C shows the AFM height image of the same cell that was imaged with a higher setpoint of 5 nN to ablate the cell surface in order to observe the intracellular positioning of the beads. A cross section (black line in Fig 6C) over the degraded cell surface was used to quantify the dimensions of the observed beads (D). The two broken dashed lines in the cross section (D) indicate the borders of the anchor region of two magnetic beads that were located within the cytoplasm prior to the degradation of the cell surface by the cantilever and were disposed by it afterwards.</p

    BDNF release.

    No full text
    <p>Release of BDNF from genetically modified NIH 3T3 fibroblasts. Unlabeled (NIH 3T3) cells were compared with cells incubated in the presence of Dynabeads-antibody-complex (NIH 3T3+Thy1+MB) and Dynabeads without antibody (NIH 3T3+MB). The BDNF release was slightly (statistically not significant) increased for cells modified with Dynabeads with or without antibody.</p

    Bright field imaging.

    No full text
    <p>Bright field microscopic image showing a single fibroblast in the middle of the image as the host for several MB. The focus of the image reveals the cell body including its periphery and some of the beads that can be seen in focus (e.g., circle A) than the remaining MB. Other beads are not in the focal plane (e.g., circle B) indicating two different planes of the vertical positions of MB. Scale bar indicates 20 μm.</p

    Height profile of MB.

    No full text
    <p>AFM height image of Dynabeads confirmed the variation of beads sizes around their nominal size of approx. 4.5 μm. Dynabeads were glued to a glass surface and were scanned using the AFM to determine their size. Scale bar: 10 μm.</p

    Cell viability with NRU.

    No full text
    <p>Normalized cell viability of NIH 3T3 fibroblasts labelled with Dynabeads in relation to the control (unlabelled cells) determined via the neutral red uptake (NRU) test. Cell viability was approved by the experiments at all different time points (7, 14 and 21 days) of cultivation after labelling with Dynabeads and remained over 85%, indicating nontoxic properties of Dynabeads.</p

    Location of MB after incubation with cells for 24 h.

    No full text
    <p>AFM error signal (A) and a phase contrast image (B) of a single NIH 3T3 fibroblast after incubation with magnetic beads for 24 h. C) Section of the larger rectangle of 3 A and B in an AFM height image and a cross section (blue line) over one of the magnetic beads. Correlation between the images B and C show how magnetic beads were located within the cell around the nucleus. (D) AFM height image of the section of the smaller rectangle in Figs 5A and C shows the anchor region of a single magnetic bead at the cell periphery that was removed by the cantilever from the surface of the cell. Scale bar in A: 20 μm.</p
    corecore