75 research outputs found

    Side differences of upper quarter Y balance test performance in sub-elite young male and female handball players with different ages

    Get PDF
    Background Handball is characterised by repetitive passing and shooting actions mainly performed with the throwing arm. This can lead to side differences (inter-limb asymmetry) in upper quarter mobility/stability between the throwing and non-throwing arm, which could even increase with advancing age (i.e., playing experience). However, side differences in upper quarter mobility/stability is associated with an increased musculoskeletal injury risk. Therefore, we assessed side differences in upper quarter mobility/stability in young handball players at different ages using a cross-sectional study design. Methods Upper Quarter Y Balance test performance of the throwing and non-throwing arm was assessed in 190 sub-elite young female and male handball players (13–18 years). Per arm, relative maximal reach distances (% arm length) for all three directions (i.e., medial, inferolateral, superolateral) and the composite score (CS) were calculated and used for an age × side analysis of variance. Additionally, partial eta-squared (ηp2) was calculated as an effect size measure. Results Irrespective of measure, statistically significant main effects of age (except for the composite score) and side but no statistically significant age × side interaction effects were detected. Further, limb asymmetry in the inferolateral reach direction was above the injury-related cut-off value (i.e., ≥ 7.75% arm length) in 13- and 14-year-olds but not in the older players. Conclusion The detection of limb asymmetry above the proposed injury-related cut-off value in younger players (13- and 14-year-olds) but not in older players (15- to 18-year-olds) may be indicative for an increased injury risk for the younger age group. Thus, prevention programs should be implemented in the handball training routine, especially for the younger ones

    The Coding and Inter-Manual Transfer of Movement Sequences

    Get PDF
    The manuscript reviews recent experiments that use inter-manual transfer and inter-manual practice paradigms to determine the coordinate system (visual–spatial or motor) used in the coding of movement sequences during physical and observational practice. The results indicated that multi-element movement sequences are more effectively coded in visual–spatial coordinates even following extended practice, while very early in practice movement sequences with only a few movement elements and relatively short durations are coded in motor coordinates. Likewise, inter-manual practice of relatively simple movement sequences show benefits of right and left limb practice that involves the same motor coordinates while the opposite is true for more complex sequences. The results suggest that the coordinate system used to code the sequence information is linked to both the task characteristics and the control processes used to produce the sequence. These findings have the potential to greatly enhance our understanding of why in some conditions participants following practice with one limb or observation of one limb practice can effectively perform the task with the contralateral limb while in other (often similar) conditions cannot

    Acute effects of a single unilateral balance training session on ipsi- and contralateral balance performance in healthy young adults

    Get PDF
    Objective While there is evidence on the short-term effects of unilateral balance training (BT) on bipedal balance performance, less is known on the acute effects of unilateral BT on unilateral (i.e., ipsi- and contralateral) balance performance. Thus, the present study examined the acute effects of a single unilateral BT session conducted with the non-dominant, left leg or the dominant, right leg on ipsilateral (i.e. retention) and contralateral (i.e., inter-limb transfer) balance performance in healthy young adults (N = 28). Results Irrespective of practice condition, significant improvements (p < 0.001, d = 1.27) in balance performance following a single session of unilateral BT were observed for both legs. Further, significant performance differences at the pretest (p = 0.002, d = 0.44) to the detriment of the non-dominant, left leg diminished immediately and 30 min after the single unilateral BT session but occurred again 24 h following training (p = 0.030, d = 0.36). These findings indicate that a single session of unilateral BT is effective to reduced side-to-side differences in balance performance, but this impact is only temporary

    Bimanual coordination associated with left- and right-hand dominance: testing the limb assignment and limb dominance hypothesis

    Get PDF
    In an experiment conducted by Kennedy et al. (Exp Brain Res 233:181–195, 2016), dominant right-handed individuals were required to produce a rhythm of isometric forces in a 2:1 or 1:2 bimanual coordination pattern. In the 2:1 pattern, the left limb performed the faster rhythm, while in the 1:2 pattern, the right limb produced the faster pattern. In the 1:2 pattern, interference occurred in the limb which had to produce the slower rhythm of forces. However, in the 2:1 condition, interference occurred in both limbs. The conclusion was that interference was not only influenced by movement frequency, but also influenced by limb dominance. The present experiment was designed to replicate these findings in dynamic bimanual 1:2 and 2:1 tasks where performers had to move one wrist faster than the other, and to determine the influence of limb dominance. Dominant left-handed (N = 10; LQ = − 89.81) and dominant right-handed (N = 14; LQ = 91.25) participants were required to perform a 2:1 and a 1:2 coordination pattern using Lissajous feedback. The harmonicity value was calculated to quantify the interference in the trial-time series. The analysis demonstrated that regardless of limb dominance, harmonicity was always lower in the slower moving limb than in the faster moving limb. The present results indicated that for dominant left- and dominant right-handers the faster moving limb influenced the slower moving limb. This is in accordance with the assumption that movement frequency has a higher impact on limb control in bimanual 2:1 and 1:2 coordination tasks than handedness

    Limb Differences in Unipedal Balance Performance in Young Male Soccer Players with Different Ages

    Get PDF
    In soccer, the dominant leg is frequently used for passing and kicking while standing on the non-dominant leg. Consequently, postural control in the standing leg might be superior compared to the kicking leg and is further enhanced with increasing age (i.e., level of playing experience). Unfortunately, leg differences in postural control are associated with an increased risk of injuries. Thus, we examined differences between limbs in unipedal balance performance in young soccer players at different ages. Performance in the Lower Quarter Y Balance Test (YBT-LQ) of the dominant and non-dominant leg and anthropometry was assessed in 76 young male soccer players (under-13 years [U13]: n = 19, U15: n = 14, U17: n = 21, U19: n = 22). Maximal reach distances (% leg length) and the composite scores were used for further analyses. Statistical analyses yielded no statistically significant main effects of leg or significant Leg × Age interactions, irrespective of the measure investigated. However, limb differences in the anterior reach direction were above the proposed cut-off value of >4 cm, which is indicative of increased injury risk. Further, statistically significant main effects of age were found for all investigated parameters, indicating larger reach distances in older (U19) compared to younger (U13) players (except for U15 players). Although reach differences between legs were non-significant, the value in the anterior reach direction was higher than the cut-off value of >4 cm in all age groups. This is indicative of an increased injury risk, and thus injury prevention programs should be part of the training of young soccer players

    Friction stir welded and deep drawn multi-material tailor welded blanks

    Get PDF
    The ever increasing demand for more resource-efficient and safer vehicles in today’s automotive industry makes lightweight construction techniques necessary. However, overcoming contradicting requirements arising from lightweight design and safety remains a challenging task. The extent to which lightweight measures can be applied in order to save fuel, heavily depends on the fact that rising safety requirements have to be met by increasing strength of parts. This contradicting demand for parts with high strength and low weight leads to the development of new production technologies. One example, regarding car body components, is the tailor welded blank (TWB) technology. In tailor welded blanks, materials and thicknesses are locally adapted to meet the needed strength and strain properties while keeping the weight as low as possible. While tailor welded blanks consisting of similar materials with different thicknesses are already used in vehicles, the use of TWBs with dissimilar materials, e.g. steel and aluminum, is still in development due to the problems in joining dissimilar materials. Especially when manufacturing parts made of TWBs through joining and subsequent deep drawing, the joint needs to have very good strength properties in order not to fail during forming. One way to overcome these joining difficulties is friction stir welding. In this paper, a methodology is presented to produce multi-material tailor welded blanks with varying thicknesses through friction stir welding (FSW) and deep drawing in a subsequent step. A newly developed FSW joint configuration is used to weld steel sheets in 1 mm thickness to 2 mm thick aluminum sheets. A welding parameter study is conducted to investigate the influence of the process parameters on the joint quality. Tensile and Nakajima tests show that the joint strength, obtained with optimal process parameters, exceeds the strength of the steel base material. Thus, failure occurs in the steel, whereas the joint remains intact. The friction stir welded blanks were furthermore deep drawn. Two different tool approaches were tested to compensate the different sheet thicknesses during the forming process. Using the more suitable approach, blanks were deep drawn with three different punch geometries to show the potential of friction stir welding for the manufacturing of multi-material tailor welded blanks

    A unified picture of aggregate formation in a model polymer semiconductor during solution processing

    Get PDF
    One grand challenge for printed organic electronics is the development of a knowledge platform that describes how polymer semiconductors assemble from solution, which requires a unified picture of the complex interplay of polymer solubility, mass transport, nucleation and, e.g., vitrification. One crucial aspect, thereby, is aggregate formation, i.e., the development of electronic coupling between adjacent chain segments. Here, it is shown that the critical aggregation temperatures in solution (no solvent evaporation allowed) and during film formation (solvent evaporation occurring) are excellent pointers to i) establish reliable criteria for polymer assembly into desired aggregates, and ii) advance mechanistic understanding of the overall polymer assembly. Indeed, important insights are provided on why aggregation occurs via a 1- or 2-step process depending on polymer solubility, deposition temperature and solvent evaporation rate; and the selection of deposition temperatures for specific scenarios (e.g., good vs bad solvent) is demystified. Collectively, it is demonstrated that relatively straightforward, concurrent in situ time-resolved absorbance and photoluminescence spectroscopies to monitor aggregate formation lead to highly useful and broadly applicable criteria for processing functional plastics. In turn, improved control over their properties and device performance can be obtained toward manufacturing sensors, energy-harvesting devices and, e.g., bioelectronics systems at high yield

    Expression, regulation and function of phosphofructo-kinase/fructose-biphosphatases (PFKFBs) in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glucocorticoids (GCs) cause apoptosis and cell cycle arrest in lymphoid cells and constitute a central component in the therapy of lymphoid malignancies, most notably childhood acute lymphoblastic leukemia (ALL). PFKFB2 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-2), a kinase controlling glucose metabolism, was identified by us previously as a GC response gene in expression profiling analyses performed in children with ALL during initial systemic GC mono-therapy. Since deregulation of glucose metabolism has been implicated in apoptosis induction, this gene and its relatives, PFKFB1, 3, and 4, were further analyzed.</p> <p>Methods</p> <p>Gene expression analyses of isolated lymphoblasts were performed on Affymetrix HGU133 Plus 2.0 microarrays. GCRMA normalized microarray data were analyzed using R-Bioconductor packages version 2.5. Functional gene analyses of <it>PFKFB2-15A </it>and <it>-15B </it>isoforms were performed by conditional gene over-expression experiments in the GC-sensitive T-ALL model CCRF-CEM.</p> <p>Results</p> <p>Expression analyses in additional ALL children, non-leukemic individuals and leukemic cell lines confirmed frequent <it>PFKFB2 </it>induction by GC in most systems sensitive to GC-induced apoptosis, particularly T-ALL cells. The 3 other family members, in contrast, were either absent or only weakly expressed (<it>PFKFB1 </it>and <it>4</it>) or not induced by GC (<it>PFKFB3</it>). Conditional PFKFB2 over-expression in the CCRF-CEM T-ALL <it>in vitro </it>model revealed that its 2 splice variants (PFKFB2-15A and PFKFB2-15B) had no detectable effect on cell survival. Moreover, neither PFKFB2 splice variant significantly affected sensitivity to, or kinetics of, GC-induced apoptosis.</p> <p>Conclusions</p> <p>Our data suggest that, at least in the model system investigated, PFKFB2 is not an essential upstream regulator of the anti-leukemic effects of GC.</p

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
    corecore