3 research outputs found

    Nano Positioning of Single Atoms in a Micro Cavity

    Full text link
    The coupling of individual atoms to a high-finesse optical cavity is precisely controlled and adjusted using a standing-wave dipole-force trap, a challenge for strong atom-cavity coupling. Ultracold Rubidium atoms are first loaded into potential minima of the dipole trap in the center of the cavity. Then we use the trap as a conveyor belt that we set into motion perpendicular to the cavity axis. This allows us to repetitively move atoms out of and back into the cavity mode with a repositioning precision of 135 nm. This makes possible to either selectively address one atom of a string of atoms by the cavity, or to simultaneously couple two precisely separated atoms to a higher mode of the cavity.Comment: 4 pages 5 figure

    Vacuum-stimulated cooling of single atoms in three dimensions

    Full text link
    Taming quantum dynamical processes is the key to novel applications of quantum physics, e.g. in quantum information science. The control of light-matter interactions at the single-atom and single-photon level can be achieved in cavity quantum electrodynamics, in particular in the regime of strong coupling where atom and cavity form a single entity. In the optical domain, this requires permanent trapping and cooling of an atom in a micro-cavity. We have now realized three-dimensional cavity cooling and trapping for an orthogonal arrangement of cooling laser, trap laser and cavity vacuum. This leads to average single-atom trapping times exceeding 15 seconds, unprecedented for a strongly coupled atom under permanent observation.Comment: 4 pages, 4 figure
    corecore