56 research outputs found

    Optomechanical sensing of spontaneous wave-function collapse

    Full text link
    Quantum experiments with nanomechanical oscillators are regarded as a testbed for hypothetical modifications of the Schr\"{o}dinger equation, which predict a breakdown of the superposition principle and induce classical behavior at the macro-scale. It is generally believed that the sensitivity to these unconventional effects grows with the mass of the mechanical quantum system. Here we show that the opposite is the case for optomechanical systems in the presence of generic noise sources, such as thermal and measurement noise. We determine conditions for distinguishing these decoherence processes from possible collapse-induced decoherence in continuous optomechanical force measurements.Comment: 3 figures, revised version with extended supplemental materia

    Quantum and classical dynamics of a three-mode absorption refrigerator

    Full text link
    We study the quantum and classical evolution of a system of three harmonic modes interacting via a trilinear Hamiltonian. With the modes prepared in thermal states of different temperatures, this model describes the working principle of an absorption refrigerator that transfers energy from a cold to a hot environment at the expense of free energy provided by a high-temperature work reservoir. Inspired by a recent experimental realization with trapped ions, we elucidate key features of the coupling Hamiltonian that are relevant for the refrigerator performance. The coherent system dynamics exhibits rapid effective equilibration of the mode energies and correlations, as well as a transient enhancement of the cooling performance at short times. We find that these features can be fully reproduced in a classical framework.Comment: 11 pages, 8 figures; additions and corrections; accepted in Quantum on 2017-12-0

    Almost thermal operations: inhomogeneous reservoirs

    Full text link
    The resource theory of thermal operations explains the state transformations that are possible in a very specific thermodynamic setting: there is only one thermal bath, auxiliary systems can only be in corresponding thermal state (free states), and the interaction must commute with the free Hamiltonian (free operation). In this paper we study the mildest deviation: the reservoir particles are subject to inhomogeneities, either in the local temperature (introducing resource states) or in the local Hamiltonian (generating a resource operation). For small inhomogeneities, the two models generate the same channel and thus the same state transformations. However, their thermodynamics is significantly different when it comes to work generation or to the interpretation of the "second laws of thermal operations".Comment: 9 pages, 5 figures. Supersedes submission arXiv:1806.0810
    • …
    corecore