2 research outputs found

    SEAwise Report on the key drivers of stock productivity and future environmental scenarios

    No full text
    An ecosystem approach to fisheries management requires the consideration of commercial species as components of an ecosystem and the acknowledgement of the links between their productivity and the surrounding environment. To provide a knowledge base for such links, SEAwise consulted stakeholders throughout Europe and conducted a systematic review of the scientific literature. The systematic review resulted in 2050 articles from the literature search that were screened for their tile and abstract. 516 of them were retained for data extraction. The majority of studies were conducted in the Baltic Sea and the North Sea, followed by the Western Waters, and with only a few dozen papers in the Mediterranean Sea. Cod and herring were the most studied species, temperature and more generally climate and hydrodynamics indicators were the main drivers investigated, and reproduction was the main productivity-related process. The output of the systematic review is a database of scientific articles organised by regions, species, environmental drivers and productivity-associated processes and where outcomes, but also spatial and time scales, analytical methods etc. are described in a standardised fashion. This database will be analysed in the coming months and used in the downstream tasks of WP3. The most frequently driver identified by stakeholders across regions was climate change followed by species interactions, cod, pollution, commercial fish/shellfish and plankton. Climate change effects on stocks through temperature and salinity are relatively well covered in the literature as are effects of plankton and species interaction. Studies of the effects of pollution do not occur frequently and as a consequence require a dedicated effort is made in SEAwise to remedy this. Species reported frequently by the stakeholders included cod, seabass, sardine, sole, crabs, flatfish, Norway lobster, octopus, shrimps, herring, sprat, anchovy, hake, new species (species increasing in abundance as a result of climate change as well as invasive species of commercial interest) and sandeel. Among these, more than 10 papers were retrieved for cod, sardine, sole, herring, sprat, selected flatfish, anchovy, hake and sandeel. For the remaining species, a dedicated effort must be made in SEAwise if they are to be included in stock models.  This report describes results of the SEAwise project. More information about the project can be found at https://seawiseproject.org/</p

    SEAwise Report on improved predictive models of growth, production and stock quality.

    No full text
    The SEAwise project works to deliver a fully operational tool that will allow fishers, managers, and policy makers to easily apply Ecosystem Based Fisheries Management (EBFM) in their fisheries and understanding how ecological drivers impact stock productivity through growth, condition and maturity is essential to this proces. In this SEAwise report, we present the predictive models of fish growth, condition and maturity obtained so far in each of the four regional case studies.The biological processes (fish growth, condition and maturity) were studied in terms of body size (weight-at-age, length-at-age), condition factor, otolith increments and size at first maturity. Underlying data were available at different levels, ranging from individual fish, to sampling haul or stock level. Accordingly, the methods employed varied across case studies to adapt to the specific features of the process under study and the available data.The methodology encompassed statistical models (linear models, generalised additive models, mixed models, Bayesian nested hierarchical models, changepoint models), otolith growth increment analyses and mechanistic models (DEB-IBM model coupled to the environment and mizer model). Some of these models were focused on detecting overall trends, including potential changepoints along the time series or identification of the main intrinsic factors. Other models explored the impact of ecological drivers such as temperature, salinity, food availability or density dependence.In the Baltic Sea, two regimes were identified in the weight-at-age time series of herring in the Gulf of Riga (1961-1988 and 1989-2020). During the first period the main driver of the individual annual growth of the fish was the abundance of the copepod L. macrurus macrurus, while the abundance of the adult stages of E. affinis affinis was the dominating explanatory variable affecting herring growth during the second period. Neither SSB nor summer temperature during the main feeding period were significant drivers of the individual growth in the two distinct ecosystem regimes.In the Mediterranean Sea, the analysis of the impact of the environmental variables on biological parameters like size at first maturity, condition factor and growth in South Adriatic Sea and North-West Ionian Sea showed some significant effects in relation to the different species/area. In most of the cases, the environmental driver was bottom temperature, although some relationships with bottom salinity and primary production were also found. The model outcomes suggested that temperatures prevailing in deeper waters were the most significant factor affecting gonad maturity of hakes, while those in the shallow zone had the main impact on the L50 of red mullets. Condition factor of hake and red mullet in the Eastern Ionian Sea were affected not only by temperature, but also by zooplankton abundance.In the North Sea, mediated length-based growth models, linear mixed models and state-space linear mixed models were applied to four gadoids, two flatfishes and one pelagic stock and their performances were assessed in terms of model fit and predictive capability. For the mediated length-based growth model approach, the best model differed across stocks, but density dependent mediation effects were significant for five out of the seven stocks. Regarding the linear mixed models, the two types of models and the different penalisation procedures led to different models across stocks. Among the additional ecological variables, surface temperature was the most frequently included in the final model, closely followed closely by SSB and to a lesser extent by NAO. Detailed otolith increment analysis was used in the development of multidecadal biochronologies of average annual growth of sole in the North Sea and in the Irish Sea. In the North Sea, the best extrinsic model of sole growth included sea bottom temperature, fishing mortality at age, and stock biomass at maturity stage, and their interactions with age and maturity stage, while in the Irish Sea, the best extrinsic model included sea bottom temperature and fishing mortality at maturity stage and its interaction with maturity stage. These results confirmed the expected positive effect of temperature on adult growth. However, in the North Sea, temperature showed unexpected negative effect on juvenile growth, which might be linked to changes in food availability and/or intraspecific competition and need to be further studied. The mizer model (package for size-spectrum ecological modelling) with environmental forcing was used to study whether warming in the North Sea is responsible for the failure of the cod stock. The simulated fish community response when recruitment and carrying capacity depended on surface temperature fitted better with the assessment data than when the environment was fixed. However, the qualitative differences remain, suggesting that temperature effects were not the main cause of the model-assessment disparity.In the Western Waters, the mediated length-based growth models developed for the North Sea case study were applied to 14 stocks in the Celtic Sea. The best model differed across stocks, but again SSB mediation was significant for most of the stocks. From visual inspection of the plots, however, it was noted that the raw data from certain stock objects showed a reduced growth compared to the model fits, requiring further analyses. The analysis on biological measurements of individuals collected at fish markets, observers at sea or during scientific cruises allowed to study temporal variations in body size and condition factor of benthic, pelagic and demersal species in the Celtic Sea and the Bay of Biscay. The linear models indicated a significant negative monotonic relationship of sizes at all ages for anchovy and pilchard, but variations in size at age were less clear and significant for benthic and demersal species. In contrast, the results of the body condition indices showed a moderate but significant decrease for all the studied 19 species over time. The in-depth analysis for anchovy in the Bay of Biscay based on research surveys confirmed the decline in the length and weight of anchovy in the Bay of Biscay and pointed to a decline in body condition toward slender body shapes. Detected associations between temperature and size became more apparent for adult age classes than for juveniles, whereas the association between anchovy size and the biomass of spawners was more important for juvenile than for adult age classes. Associations between anchovy size and chlorophyll-a concentration were in general weak. Finally, the DEB-IBM model coupled to the environment that is under development for the two main seabass stocks of the North East Atlantic will provide further insights on how growth, condition and maturation can affect the future dynamics and productivity of these stocks.Read more about the project at www.seawiseproject.org</p
    corecore