64 research outputs found

    Development of a VHH-Based Erythropoietin Quantification Assay

    Get PDF
    Erythropoietin (EPO) quantification during cell line selection and bioreactor cultivation has traditionally been performed with ELISA or HPLC. As these techniques suffer from several drawbacks, we developed a novel EPO quantification assay. A camelid single-domain antibody fragment directed against human EPO was evaluated as a capturing antibody in a label-free biolayer interferometry-based quantification assay. Human recombinant EPO can be specifically detected in Chinese hamster ovary cell supernatants in a sensitive and pH-dependent manner. This method enables rapid and robust quantification of EPO in a high-throughput setting

    Predictive glycoengineering of biosimilars using a Markov chain glycosylation model

    Get PDF
    Biosimilar drugs must closely resemble the pharmacological attributes of innovator products to ensure safety and efficacy to obtain regulatory approval. Glycosylation is one critical quality attribute that must be matched, but it is inherently difficult to control due to the complexity of its biogenesis. This usually implies that costly and time-consuming experimentation is required for clone identification and optimization of biosimilar glycosylation. Here, we describe a computational method that utilizes a Markov model of glycosylation to predict optimal glycoengineering strategies to obtain a specific glycosylation profile with desired properties. The approach uses a genetic algorithm to find the required quantities to perturb glycosylation reaction rates that lead to the best possible match with a given glycosylation profile. Furthermore, the approach can be used to identify cell lines and clones that will require minimal intervention while achieving a glycoprofile that is most similar to the desired profile. Thus, this approach can facilitate biosimilar design by providing computational glycoengineering guidelines that can be generated with a minimal time and cost

    Engineering CHO cells for the production of Hard-To-Produce proteins

    Get PDF
    Over the past decades, the CHO cell has become increasingly popular as the favorite host cell line for the production of protein based therapeutic drugs. In comparison with the popularity of the CHO cells and the frequent use of these cells to produce a large part of the bestselling blockbuster drugs, less intensive efforts have been done to understand the machinery used by the CHO cells during growth and production. The main approach has (broadly speaking) been to approach the CHO cell as a “black box” where one could insert the gene of interest, perform a number of amplifying steps, like gene amplification, selection for stable clones, intense screening for stably expressing high producers, and massive efforts to optimize a specific bioprocess for the selected cell line(s). Since 2013, the Novo Nordisk Foundation Center for Biosustainablity at the Technical University of Denmark has embarked on a large CHO program to open up the “black box”, to get a deeper understanding of the available machinery inside the protein producing “cell factory” that is CHO cells. We are using this understanding to engineer new CHO cell lines having significantly improved features for the production of therapeutic proteins. We are not only doing this by improving the titer, quality, downstream processing and speed of development for already well-known proteins (e.g. Ab), but also for the production of therapeutic proteins that cannot be produced in CHO cells today, due low titer, wrong post translational modifications, and/or low activity. By combining the competences embedded in the CHO program, we are able to exploit the combination of genome scale modelling, high throughput protein expression, deep understanding of both the glycosylation machinery as well as the secretory and metabolic pathways involved in the expression of secreted proteins. This knowledge is being used as input to a high throughput CHO cell line engineering pipeline, able to engineer up to 10 cell lines and 25 gene targets in parallel. This has resulted in a large number of new CHO cell lines enabling the production of proteins with specific tailor-made glycoprofiles, higher quality, less degradation, improved bioprocess, higher viable cell density and better cell viability. We have made a cell lines where we have removed a number of naturally expressed host cell proteins (HCP) from CHO, which has resulted in higher titer and higher VCD, cell lines showing increased resistance to viral infections, cell lines displaying homogenous glycoprofiles, reduced degradation, and drastically changed cell lines that does not produce lactate. These features are currently being combined to engineer CHO cells able to produce proteins that have not been possible to produce with adequate product quality and titer using CHO cells to date

    Versatile microscale screening platform for improving recombinant protein productivity in Chinese hamster ovary cells

    Get PDF
    Chinese hamster ovary (CHO) cells are widely used as cell factories for the production of biopharmaceuticals. In contrast to the highly optimized production processes for monoclonal antibody (mAb)-based biopharmaceuticals, improving productivity of non-mAb therapeutic glycoproteins is more likely to reduce production costs significantly. The aim of this study was to establish a versatile target gene screening platform for improving productivity for primarily non-mAb glycoproteins with complete interchangeability of model proteins and target genes using transient expression. The platform consists of four techniques compatible with 96-well microplates: lipid-based transient transfection, cell cultivation in microplates, cell counting and antibody-independent product titer determination based on split-GFP complementation. We were able to demonstrate growth profiles and volumetric productivity of CHO cells in 96-half-deepwell microplates comparable with those obtained in shake flasks. In addition, we demonstrate that split-GFP complementation can be used to accurately measure relative titers of therapeutic glycoproteins. Using this platform, we were able to detect target gene-specific increase in titer and specific productivity of two non-mAb glycoproteins. In conclusion, the platform provides a novel miniaturized and parallelisable solution for screening target genes and holds the potential to unravel genes that can enhance the secretory capacity of CHO cells

    Elimination of the Warburg effect in Chinese hamster ovary (CHO) cells improves cell phenotype as a protein production platform

    Get PDF
    Lactate is a common metabolite and is central to many important processes. One of its more prominent roles is in the Warburg effect, in which cancer cells exhibit high rates of glycolytic flux followed by secretion of lactate, even in the presence of oxygen. This fermentation of pyruvate to lactate via lactate dehydrogenase (Ldh) accompanies increased proliferation of cancer cells and several other types of rapidly proliferating cell types in immune cell activation and embryonic development. Aerobic glycolysis is also prominent in biotherapeutic protein production, where mammalian production cells often secrete high levels of lactate. The accumulation of lactate is deleterious for cell growth, viability, product formation, and quality, both directly via acidification of the media and indirectly through base addition to control culture pH. Despite a clear genetic target, efforts to eliminate lactate secretion via knockout of Ldh(s) in mammalian cells have been unsuccessful, pointing to the essentiality of Ldh mediated NAD regeneration. A wide variety of approaches have been utilized to limit lactate accumulation in culture, including knockdown or inhibition of Ldh, replacement of glucose with alternate sugars, controlled feeding strategies, and many others, however none have proven successful in eliminating the Warburg effect. We report the elimination of the Warburg effect in a CHO cell line by using CRISPR/Cas9-based engineering to simultaneously knockout enzymes responsible for lactate production and ancillary regulators. The resulting cell lines remain proliferative while consuming significantly less glucose and can be used to generate protein producing lines using standard industrial processes. In a pH-controlled fedbatch process, the Warburg null cells require minimal base addition to maintain a stable pH, allowing an extended growth phase. The knockout strategy was also successfully applied to a CHO cell line producing Rituximab, again resulting in a prolonged growth phase. Additionally, protein production was maintained, while product quality was improved with increased glycan galactosylation. Thus, CHO cells without the capacity of Warburg metabolism may be useful for engineering production cell lines with enhanced bioproduction traits

    Selective N-terminal acylation of peptides and proteins with a Gly-His tag sequence

    Get PDF
    His-tagged proteins can undergo N-terminal acylation as an undesired side-reaction. Here, the authors utilize this to develop a method for highly selective acylation and further modification of peptides and proteins using an optimized His sequence and 4-methoxyphenyl esters as acyl donors
    corecore