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Abstract 

Biosimilar drugs must closely resemble the pharmacological attributes of innovator products to 

ensure safetyand efficacy to obtain regulatory approval. Glycosylation is one critical quality attribute 

that must be matched, but it is inherently difficult to control due to the complexity of its biogenesis. 

This usually implies that costly and time-consuming experimentation is required for clone 

identification and optimization of biosimilar glycosylation. Here, we describe a computational method 

that utilizes a Markov model of glycosylation to predict optimal glycoengineering strategies to obtain a 

specific glycosylation profile with desired properties. The approach uses a genetic algorithm to find 

the required quantities to perturb glycosylation reaction rates that lead to the best possible match 

with a given glycosylation profile. Furthermore, the approach can be used to identify cell lines and 

clones that will require minimal intervention while achieving a glycoprofile that is most similar to the 

desired profile. Thus, this approach can facilitate biosimilar design by providing computational 

glycoengineering guidelines that can be generated with a minimal time and cost. 
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1 Introduction 

During biosimilar development, process parameters are adjusted to reproduce the pharmacological 

and biochemical properties of the original approved innovator protein drug. Protein glycosylation is a 

critical post-translational modification on most secreted mammalian proteins, and variations in glycan 

structure can significantly impact the bioactivity of a protein (Dalziel et al., 2014; Griebenow and Sola, 

2009; Jefferis, 2009; Li and d’Anjou, 2009; Raju, 2008; Solá and Griebenow, 2011). Thus, regulatory 

agencies require that biosimilar drug glycoforms match the approved drug. Consequently, engineering 

the glycoprofile, i.e. the relative frequencies of glycans present on the protein, is a critical part of 

biosimilar production (Chiang et al., 2016; Niwa and Satoh, 2015; Tsuruta et al., 2015; Zhang et al., 

2016). 

 

Reproducing a glycoprofile can be difficult since, in theory, a cell could synthesize thousands of 

different glycans. Protein glycosylation is a non-template driven process whose outcome follows a 

statistical distribution. It is often difficult to predict this process with pure intuitive reasoning since 

perturbation of a glycosyltransferase will affect the abundances of glycans and the rates of other 

reactions connected to it, often leading to non-obvious glycoforms. As a consequence, expansive 

profiling of diverse clones and elaborate titration experiments are usually necessary. Therefore, 

computer simulations could provide valuable guidance by predicting the required quantities of 

reaction rate perturbation or aid in clone selection to facilitate glycoengineering efforts.  

 

We previously developed a model of glycosylation that captured the stochastic nature of its biogenesis 

by conceptualizing it as a Markov chain process (Spahn et al., 2016). The advantage of this 

probabilistic approach is that the many factors influencing the kinetics of glycosylation reactions are 

subsumed in probabilities, thus avoiding the necessity to estimate kinetic parameters. Instead, the 

model uses an initial known glycoprofile from a starting production cell line. The observed glycan 

frequencies in this profile are used to empirically reconstruct the probabilities for each glycosylation 

reaction in the network. After this fitting process, the model can simulate how the glycoprofile will 

change after perturbing one or more enzyme-dependent reaction sets (see Methods) . These 

perturbations can include various experimental techniques that can either involve cell engineering 

(knock-downs or overexpression of glycosylation genes) or bioprocess control (media 

supplementation with nutrients or inhibitors). Although this and other glycosylation models (Spahn 

and Lewis, 2014; Villiger et al., 2016) allow one to make a priori predictions of glycoprofiles, there is 

still a great need for easy-to-use computational approaches that would directly address 

glycoengineering efforts and help to quantitatively predict optimal perturbation strategies to 

recapitulate a desired glycoprofile.  
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Here we present a novel optimization-based implementation of the glycosylation Markov model that 

predicts the quantitative amount by which glycosylation reaction rates must be perturbed to achieve a 

desired glycoprofile. We demonstrate how this approach can guide glycoengineering in the context of 

biosimilar production, where the desired glycoprofile is already known, but the quantitative 

perturbations necessary to achieve it are not. To accomplish this, we reverse the simulation workflow 

such that, rather than predicting an unknown glycoprofile, the simulation predicts the optimal level of 

reaction rate perturbation that achieves a glycoprofile. We demonstrate the capabilities of this 

approach to predict experimental interventions needed to mimic the glycoprofile of Rituximab and 

Erythropoietin (EPO). These model-derived predictions can then serve as guidance to efficiently adjust 

the experimental means (e.g. the concentration range of an inhibitor). In addition, these simulations 

can help to assess which glycoprofiles will be harder or easier to engineer towards desired properties. 

This can help identify production cell lines that produce proteins with glycosylation profiles that will 

require minimal experimental modification to match the innovator drug. 

 
 

2 Materials and methods 

2.1 Glycoprofiling 

Glycoprofiling was performed as previously published (Grav et al., 2015). Exponentially growing cells 

were seeded at 1x106 cells/mL and supernatant was harvested after 4 days by centrifugation. 

Supernatant for all samples was filtered before further processing. Rituximab was purified using 

HiTrap MabSelect columns (GE Healthcare) according to the manufacturer’s instructions. EPO 

containing supernatants (175 mL) were buffer exchanged with 400 mL 20 mM TRIS-HCl pH 8.0 using a 

VivaFlow 50 30 kDa MWCO cross flow cassette (Sartorius). Samples were loaded onto a Mono Q 5/50 

GL column (GE Healthcare) and EPO was eluted using a gradient increase to 20 mM TRIS-HCl pH 8.0, 

300 mM NaCl over 30 column volumes. EPO containing fractions were pooled and analyzed by SDS 

PAGE. Concentrations of Rituximab and EPO were measured by Nanodrop (Thermo Scientific). N-

glycans from purified proteins were released and fluorescently labeled with GlykoPrep Rapid N-

Glycan kit (ProZyme Inc., Hayward, CA). Labeled N-glycans were analyzed by LC-MS on a Thermo 

Ultimate 3000 HPLC with fluorescence detector coupled on-line to a Thermo Velos Pro Iontrap MS. 

Glycan abundance was measured by integrating the areas under normalized fluorescence spectrum 

peaks with Xcalibur software (Thermo Fisher Scientific) giving the relative amount of the glycans. 

 

2.2 Simulation 

The Markov model of glycosylation, including the rationale to computationally predict perturbations, 

is implemented as previously published (Spahn et al., 2016). Based on the data given in the initial 
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glycoprofile, reaction probabilities are reconstructed to generate the model for the glycosylation 

reaction network present in the cell line from which the initial glycoprofile was obtained. An objective 

function is defined that takes this initial model, a list of perturbations of it, and the provided target 

profile as input variables. A perturbation is defined as the name of a glycosylation enzyme and a 

quantity q by which its reaction set is to be scaled up (if q > 1) or down (if 0 < q < 1). The term 

“reaction set” refers to the entirety of reactions in the glycosylation reaction network that depend 

upon a specific glycosylation enzyme. The objective function returns the mismatch between the 

computed perturbed profile and the target profile. To find a minimum of this mismatch, a genetic 

algorithm, as implemented in MATLAB (function ga), is set up that infers the optimal quantity of 

perturbation over the space of all possible quantities of perturbation within a given range between 0 

and a maximum upper bound (qmax = 10 used in this study). Specifying this upper bound is also helpful 

in situations where it is clear that certain reaction sets need to be scaled down rather than up in which 

case the upper bound can be set to 1. The stopping criterion is set to a maximum of 20+(Number of 

reaction sets)*20 generations while premature stopping occurs if the best objective function value 

stalls for more than 10 generations. Population size is set to 20 individuals with default settings for 

selection, crossover and mutation. Refer to standard literature (e.g. (Mitchell, 1998) as well as the 

MATLAB website (www.mathworks.com) for an explanation of genetic algorithm rationale and 

terminology. Mismatch between two profiles is calculated as the absolute distance between average 

glycan frequencies, summed over all glycans in the profiles. Individual (non-negative) weights can be 

defined for individual glycans to adjust their impact on the overall mismatch between two profiles. If 

all weights are set to 1 (as used throughout this paper), the metric equals the Manhattan metric. A 

least 10 independent runs of the genetic algorithm were evaluated for each glycoprofile that all 

yielded the same minimal possible profile mismatch. In order to assess robustness, the predicted 

optimal quantities of perturbation were allowed to randomly vary by 10% and the resulting 

glycoprofiles were recalculated. 

 

 

3 Results  

3.1 An application of the glycosylation Markov model predicts how to achieve a target 

glycoprofile 

The Markov model provides a platform to predict changes in an initial glycoprofile (i.e. the profile 

obtained from the production cell line as it stands) following reaction rate perturbations (Spahn et al., 

2016). To predict the optimal engineering strategy to achieve a desired glycoprofile, here we reverse 

the workflow such that, in addition to the initial glycoprofile, the target glycoprofile (i.e. the desired 

profile of the innovator product) needs to be provided. In addition, it can be specified which enzyme-
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dependent glycosylation reaction sets are supposed to be perturbed. This choice is optional, but since 

often not all glycosylation reactions require perturbation, or only a subset is amenable to perturbation 

with the experimental means at hand, specification will speed up computation. For example, if a 

chemical inhibitor of a fucose transporter is to be used in combination with a supplementation of UDP-

galactose, FucT and GalT would be specified as glycosylation reaction sets since fucosylation and 

galactosylation reactions are being affected through these treatments. 

 

The simulation starts by first fitting the Markov model to the initial glycoprofile to infer the reaction 

probabilities in the production cell line (Spahn et al., 2016). To find an optimal quantitative strategy to 

engineer this profile towards the target profile, the simulation runs a genetic algorithm that randomly 

modifies the levels of perturbation in the specified reaction set, computes the resulting changes in the 

glycoprofile and retains the best solutions. By mixing and randomly changing these solutions, the 

algorithm iteratively converges on the target profile and reaches an optimal level of perturbation (see 

Methods). The final quantitative levels of perturbations leading to this optimum are returned. The 

similarity between glycoprofiles is measured by using a profile mismatch metric. This metric can be 

flexibly defined for the requirements of the specific glycoengineering problem. For example, if certain 

glycans are more important than others in the profile (due to regulatory or functional reasons), 

weights can be assigned to them so these priorities are reflected by the simulation (see Methods). 

 

3.2 Engineering strategies can be designed to match the glycoprofile of IgGs 

We demonstrate the workflow with Rituxmab, a monoclonal antibody of high commercial interest 

(Daniel et al., 2015; Turner, 2015; Visser et al., 2013). The glycoprofile of the innovator drug shows the 

typical pattern of an IgG1 antibody featuring G0, G1 and G2 glycoforms as well as a low level of 

fucosylation (Visser et al., 2013) (Fig. 1A). Achieving this glycoprofile usually requires a considerable 

degree of glycoengineering since CHO cell lines used for production typically display profiles that 

show higher degrees of fucosylation. When produced in a CHO-S line, the Rituximab glycoprofile has 

all glycoforms being fucosylated (Fig. 1A). Since the target profile on the innovator drug shows only 

minor fractions of fucosylation, the FucT reaction set is an obvious target for downregulation through 

glycoengineering, but due to the intertwined nature of the glycosylation reaction network (Fig. 1E) the 

magnitude of downregulation of FucT activity is non-obvious. Running the Markov-model based 

simulation, a downregulation to ~2% is predicted to give the closest possible match to the desired 

target profile, if only fucosylation is allowed to be altered (Fig. 1B). However, as evident from the 

frequency mismatches in the predicted profile (glycans G0-G2), the increased levels of galactosylated 

glycoforms present on the innovator profile require further modification, so it is reasonable to alter 

the GalT reaction set as well. By allowing perturbation of both reaction sets, an optimal perturbation 

that matches the degree of both galactosylation and fucosylation is computed to be at 41% 
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upregulation of the GalT reaction set and downregulation to ~2% of the FucT reaction set (Fig. 1C). As 

mentioned above, custom weights could be applied for individual glycans, e.g. if a match in G1 (rather 

than G0) is to be given higher priority because stability concerns are not an issue (Raju and Scallon, 

2007). Finally, the target profile also includes a fraction of high-mannose glycoforms, so GnTI can be 

added to the list of reaction sets to be altered because failure to add the respective GlcNAc at this point 

in the network will cause secretion of unprocessed (high-mannose) glycoforms. As predicted by the 

simulation, an excellent match to the target profile can be obtained by reducing GnTI to ~98% while 

increasing galactosylation by ~30% and decreasing fucosylation to ~2% since also the M5 fraction 

will be successfully reproduced (Fig. 1D, arrow). Thus, our model-based simulation can give helpful 

clues into how close a certain target profile can be matched with a given initial cell line, and also 

provides the predicted reaction rate perturbations that will transform the initial profile accordingly. 

 

3.3 Validation based on glycosyltransferase knock-out cell lines 

In order to validate that our simulation framework can infer perturbations based on glycoprofiles, we 

tested it on glycosyltransferase knock-out cell lines in CHO, published previously (Yang et al., 2015). A 

starting glycoprofile was obtained for EPO, expressed in a wildtype CHO-GS cell line. The model was 

used to predict the modifications required to match target profiles for mgat4A/4B, mgat5 and 

mgat4A/4B/5 knock-out cell lines, and the simulation correctly inferred the complete abrogation of 

GnTIV, GnTV and GnTIV + GnTV, respectively (Fig. 2A, 1-3). Interestingly, a slight perturbation to 

GnTIV was also seen for the GnTV knock-out, suggesting that those reactions were also moderately 

affected. However, the results here demonstrated that even for more complex multi-gene strategies, 

the model can accurately predict the strategy to perturb glycosylation to achieve a desired 

glycoprofile.  

 
3.4 Clones can be screened to test feasibility of engineering strategies 

The approach presented here allows one to predict how to engineer a cell line to obtain glycoprofiles 

that approximate a desired innovator drug profile. However, different cell lines typically produce 

glycoprofiles that differ in their consistency with the target profile. Thus, it can be difficult to select the 

best cell line for glycoengineering efforts because it could be unclear which one requires less complex 

genetic or processing-related adjustments. Furthermore, it is often unclear which cell lines can be 

brought closest to the target profile. Our approach could therefore be valuable in choosing an optimal 

production line as it can give a quick guidance into the complexity of engineering strategies and assess 

the degree of match achievable for each cell line. We exemplify this application with two glycoprofiles 

on EPO produced in CHO lines, and compare the optimal strategies to achieve a profile from the 

literature (Yang et al., 2015). As shown by the simulation, both cell lines can approach the target 

profile through perturbation of SiaT, GnTIV and GnTV-dependent reactions. However, cell line #1 
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attains a considerably better match after glycoengineering, despite having an initial glycoprofile that 

differs more substantially from the innovator drug than cell line #2 (Fig. 2B). Indeed, the simulation 

indicates that even an optimal glycoengineering strategy can only obtain a mediocre match to the 

target profile for cell line # 2 (Fig. 2B). Consequently, the optimal cell line for glycoengineering is not 

necessarily the one showing the best initial match to the target profile. Computational analyses like 

these could be carried out even on a large collection of cell line candidates and help in prioritization 

and proper selection of glycoengineering methods. 

 

4 Discussion  

Here we have presented a novel approach that allows the prediction of engineering strategies to 

obtain a target glycoprofile, such as a profile from an innovator drug. It is important to note that the 

strategies predicted by our model represent quantities by which glycosylation reaction rates need to 

be perturbed. As such, our model makes no restriction on how these perturbations could be carried 

out experimentally. In fact, finding the right experimental tool for implementing these predicted 

quantitative perturbations is a challenge to the cell engineer; fortunately, recent progress in genetic 

and metabolic cell culture engineering have made a wide range of options available in this field the 

choice of which will largely depend on the specific perturbation to be obtained (Brühlman et al., 2015).  

 

For example, if the model suggests a reduction in reaction rates, small-interfering RNA represents an 

inexpensive and effective option since downregulation of glycosylation genes can effectively change 

the glycoprofile (Imai-Nishiya et al., 2007). Alternatively, small molecules, such as sugar analogs or 

chemical inhibitors, can be used to reduce the rates of certain glycosylation reactions (Gardai et al., 

2015; Okeley et al., 2013; Pande et al., 2015; Rillahan et al., 2012; Surve and Gadgil, 2015); also, the 

reduction of glucose has been reported as a way to reduce galactosylation levels (Villacres et al., 

2015). Future work will aim to link to various media and bioprocesses treatments to other enzymatic 

reactions, thus further expanding the means by which such interventions can be used in a predictable 

manner. Since these non-genetic methods only require modification of the growth medium, they 

would be preferable in cases where manipulation of the cell line in use is not desired. Since the 

compounds used (siRNA or small molecules, respectively) can be titrated, these methods are 

particularly attractive for partial reduction of reaction rates where the quantitative level of reaction 

activity is supposed to match the level predicted by the model. In contrast, if total abrogation (i.e. a 

reduction to nearly 0%) is indicated by the model, genetic knock-outs of one or more glycosylation 

genes through zinc-finger nucleases, TALENS or CRISPR-Cas9 technology (Gaj et al., 2013; Kim and 

Kim, 2014; Lee et al., 2015) may be more attractive options since these methods provide a more 

effective way to permanently eliminate gene activity.  
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In cases where the model suggests increases in glycosylation reaction rates (see Fig. 2B), both genetic 

and metabolic perturbation strategies could be employed as well. Genetic approaches would, for 

example, include ectopic expression of glycosyltransferases or CRISPR-mediated gene activation in 

order to increase certain glycosylation reaction rates (Lin et al., 2015; Perez-Pinera et al., 2013; 

Weikert et al., 1999; Zalatan et al., 2015). Such ectopic expression could be combined with inducible 

promoters (Gossen and Bujard, 1992; Weber et al., 2004) to quantitatively control the increase of 

transgene expression, and thus reaction rates. Alternatively, supplementation of the growth medium 

with sugars, sugar-nucleotides or cofactors (e.g. manganese) provides a powerful method to increase 

certain glycosylation reactions as exemplified in several studies (Grainger and James, 2013; Gramer et 

al., 2011; St Amand et al., 2014). In addition to modifications of either the growth media or the host 

genome or transcriptome, protein yield can be another cell culture parameter affecting the 

glycoprofile. For instance, increases in protein yield can indirectly downregulate glycosylation 

reactionrates since under high protein production sugar substrates can become limiting. Also, at high 

protein production rates, glycosylation enzymes might not be capable of processing the entire bulk of 

Golgi-transiting proteins, thus leaving a higher fraction to remain in their unmodified, high-mannose 

glycoform (del Val et al., 2016).  

 

Thus, multiple different approaches could be taken to fine-tune the activity of specific biosynthetic 

reactions in glycosylation. However, the ease of supplementing media with either inhibitory or 

stimulating agents makes it the most convenient strategy for implementing the model-predicted 

down- or upregulations, respectively. Genetic knock-outs might be the preferred method if a reaction 

set needs to be shut down completely and if genetic engineering of the production cell line is an 

option. 

 

As demonstrated by the increasing profile similarity (Fig. 1 B-D), inclusion of multiple reaction sets for 

perturbation should typically obtain a closer match to the target profile, but it also increases 

complexity of the optimization problem resulting in slower convergence (i.e. increased computation 

time). More practically, however, the inclusion of more enzymes will require more complex 

experiments to fine-tune the engineering strategies. Also, glycosylation reactions are not perfectly 

independent since they all rely upon a shared sugar nucleotide metabolic network. Future advanced 

models could take this into account by integrating sugar metabolism into the prediction of glycoforms, 

as already demonstrated for kinetic glycosylation models (Jedrzejewski et al., 2014; Villiger et al., 

2016). Thus, efforts that employ the simplest strategy resulting in a glycoprofile that meets 

requirements of safety, efficacy, and similarity are preferred.  

 

In summary, while this approach contributes to a growing body of work on modeling glycosylation 

with a variety of computational methods (Hossler, 2012; Neelamegham and Liu, 2011; Spahn and 
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Lewis, 2014), our method is the first that directly addresses model-based prediction of biosimilar 

design. The probabilistic foundation of it makes it especially valuable for rapid in silico screens as 

running the simulation requires no input other than the initial and the target glycoprofiles and the 

specification of the reaction sets to be perturbed. The method is fully flexible and can be used for any 

cell line and any recombinant glycoprotein. It can, thus, be a helpful asset in QbD-oriented 

glycoengineering efforts. 
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Figure legends 

 

 
Figure 1. (A): Glycoprofiles on Rituximab, expressed in CHO-S cell line before any glycoengineering 
(“Initial”). The target profile shows the glycoprofile of the innovator drug as reported previously 
(Visser et al., 2013). (B)-(D): Results from the Markov-model based glycoengineering simulation (two 
representative runs shown) considering only FucT (B), FucT+GalT (C) or FucT+GalT+GnTI (D) 
reaction sets for perturbation. Profile mismatch evolution plots (left) show the worst, best and mean 
profile mismatches in each generation of the genetic algorithm. Perturbation plots (right) show the 
quantity of predicted perturbation yielding the best match in each generation. Glycoprofiles (far right) 
are calculated with the averages of perturbations throughout all independent simulation runs. Error 
bars are standard deviation. (E): Reaction network for the glycoprofiles on Rituximab and partial 
reaction network reconstructed for the glycoprofile on erythropoietin. Reactions are color-coded 
according to the glycosylation enzyme involved. 
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Figure 2. (A): Glycoprofiles on EPO, expressed in CHO-GS (Wildtype and knock-out data from (Yang et 
al., 2015)). The simulation infers the required perturbations in SiaT, GnTIV and GnTV that transform 
the wildtype profile into the observed knock-out profiles (one representative run shown). Error bars 
are standard deviation. (B): Glycoengineering of two EPO-producing CHO lines with varying degrees 
of branching and sialylation. The reaction sets dependent on the branching enzymes GnTIV & GnTV 
and sialyltransferase (SiaT) are subject to perturbation in simulations (one representative run 
shown).Glycoprofiles are calculated with the averages of perturbations throughout all independent 
simulation runs. Error bars are standard deviation. Brackets indicate the range of the predicted 
averages when optimal predicted perturbations are varied by 10% (Methods). 
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