2 research outputs found

    Competing Forces during Contact Formation between a Tip and a Single Molecule

    No full text
    Sn-phthalocyanine adsorbs on Ag(111) in a physisorbed or a chemisorbed configuration. Both structures are contacted with the tip of a combined scanning tunneling and atomic force microscope. The tunneling conductances of both configurations exhibit similar exponential variations with the tip–molecule distance. The short-range forces, however, display nontrivial distance dependencies. First-principles calculations reproduce the experimental results. Both attractive and repulsive interactions occur between the tip and different parts of the molecule due to a combination of bond formation and electrostatic interactions with the tip electric dipole. Consequently, deformations occur and the force varies in the resulting unexpected fashion

    Single Electron Charge Sensitivity of Liquid-Gated Carbon Nanotube Transistors

    No full text
    Random telegraph signals corresponding to activated charge traps were observed with liquid-gated CNT FETs. The high signal-to-noise ratio that we observe demonstrates that single electron charge sensing is possible with CNT FETs in liquids at room temperature. We have characterized the gate-voltage dependence of the random telegraph signals and compared to theoretical predictions. The gate-voltage dependence clearly identifies the sign of the activated trapped charge
    corecore