2,891 research outputs found

    Assessment of the energy and economic performance of second generation biofuel production processes using energy market scenarios

    Get PDF
    In this paper performance assessment of second generation biofuel production using energy market scenarios and system-level performance indicators is proposed. During biofuel production a number of products and services can be co-generated while import of energy services (e.g. electricity and heat) in addition to the fuel supply may also be needed. This needs to be reflected by a well-defined performance indicator enabling a comparison between different process alternatives. A marginal production perspective is proposed in this study for the definition of a general energy performance indicator, recalculating all services to primary energy on a system level. The Energy Price and Carbon Balance Scenarios (ENPAC) tool developed at Chalmers is used for the definition of the energy system background. Thereby, a scenariospecific comparison of the processes’ thermodynamic, economic and carbon footprint performance is possible. The usefulness of the approach is illustrated for production of synthetic natural gas (SNG) from biomass. The shortcomings of common performance indicators are also discussed

    Stable and unstable attractors in Boolean networks

    Full text link
    Boolean networks at the critical point have been a matter of debate for many years as, e.g., scaling of number of attractor with system size. Recently it was found that this number scales superpolynomially with system size, contrary to a common earlier expectation of sublinear scaling. We here point to the fact that these results are obtained using deterministic parallel update, where a large fraction of attractors in fact are an artifact of the updating scheme. This limits the significance of these results for biological systems where noise is omnipresent. We here take a fresh look at attractors in Boolean networks with the original motivation of simplified models for biological systems in mind. We test stability of attractors w.r.t. infinitesimal deviations from synchronous update and find that most attractors found under parallel update are artifacts arising from the synchronous clocking mode. The remaining fraction of attractors are stable against fluctuating response delays. For this subset of stable attractors we observe sublinear scaling of the number of attractors with system size.Comment: extended version, additional figur

    Exergy-based comparison of indirect and direct biomass gasification technologies within the framework of bio-SNG production

    Get PDF
    Atmospheric indirect steam-blown and pressurised direct oxygen-blown gasification are the two major technologies discussed for large-scale production of synthetic natural gas from biomass (bio-SNG) by thermochemical conversion. Published system studies of bio-SNG production concepts draw different conclusions about which gasification technology performs best. In this paper, an exergy-based comparison of the two gasification technologies is performed using a simplified gasification reactor model. This approach aims at comparing the two technologies on a common basis without possible bias due to model regression on specific reactor data. The system boundaries include the gasification and gas cleaning step to generate a product gas ready for subsequent synthesis. The major parameter investigated is the delivery pressure of the product gas. Other model parameters include the air-to-fuel ratio for gasification as well as the H<SUB>2</SUB>/CO ratio in the product gas. In order to illustrate the thermodynamic limits and sources of efficiency loss, an ideal modelling approach is contrasted with a model accounting for losses in, e.g. the heat recovery and compression operations. The resulting cold-gas efficiencies of the processes are in the range of 0.66–0.84 on a lower heating value basis. Exergy efficiencies for the ideal systems are from 0.79 to 0.84 and in the range of 0.7 to 0.79 for the systems including losses. Pressurised direct gasification benefits from higher delivery pressure of the finished gas product and results in the highest exergy efficiency values. Regarding bio-SNG synthesis however, a higher energetic and exergetic penalty for CO<SUB>2</SUB> removal results in direct gasification exergy efficiency values that are below values for indirect gasification. No significant difference in performance between the technologies can be observed based on the model results, but a challenge identified for process design is efficient heat recovery and cogeneration of electricity for both technologies. Furthermore, direct gasification performance is penalised by incomplete carbon conversion in contrast to performance of indirect gasification concepts

    Integration aspects for synthetic natural gas production from biomass based on a novel indirect gasification concept

    Get PDF
    An innovative indirectly heated biomass gasification unit has been recently built at Chalmers University of Technology as an integrated extension of a standard circulating fluidised bed (CFB) boiler for heat and power production. The gasification medium can be varied between steam, oxygen, combustion flue gases or recirculated syngas. In this paper a process for production of synthetic natural gas (SNG) based on this biomass gasification technique is proposed and investigated with emphasis on evaluation of possible heat integration options. Special attention is given to possible options for cogeneration of heat and power. The increase in electricity production from the power cycle is achieved by two means: combusting the non-reacted char from gasification in the boiler and extracting high temperature excess heat from the syngas to SNG conversion steps. It is shown that the amine-based CO2 separation stage is a large heat sink. The reduction of the steam demand for the CO2 absorbent regeneration stripper is of crucial importance to have a maximum of high temperature excess heat available from the gasification process to be used in the steam power cycle. The cold gas efficiency for SNG production comparing biomass input to SNG output is about 60 % for the proposed process. This performance indicator however does not consider the electricity production increase. The balance between SNG yield and increased electricity production is mainly dependant on the gasification efficiency since the amount of char from gasification that is used in the boiler directly influences the yield of synthetic natural gas

    Renewable OME from biomass and electricity—Evaluating carbon footprint and energy performance

    Get PDF
    Energy Science &amp; Engineering published by the Society of Chemical Industry and John Wiley &amp; Sons Ltd. Renewable drop-in fuels provide a short- to medium-term solution to decreasing carbon dioxide emissions from the transport sector. Polyoxymethylene ethers (OME) are among interesting candidates with production pathways both from biomass (bio-OME) as well as electricity and CO2 (e-OME) proposed. In the present study, both bio- and e-OME production via methanol are assessed for energy performance and carbon footprint. Process integration methods are applied to evaluate synergies from colocating methanol production with further conversion to OME. Even a hybrid process, combing bio- and e-OME production is evaluated. The energy efficiency of bio-OME is considerably higher than for the e-OME pathway, and colocation synergies are more evident for bio-OME. Carbon footprint is evaluated according to EUs recast Renewable Energy Directive (RED\ua0II). If renewable electricity and natural gas are used for power and heat supply, respectively, results indicate that all pathways may be counted toward the renewable fuel targets under RED\ua0II. The largest emissions reduction is 92.8% for colocated hybrid-OME production. Carbon footprints of e- and hybrid-OME are highly sensitive to the carbon intensity of electricity, and the carbon intensity of the heat supply has a major impact on results for all pathways except colocated bio- and hybrid-OME

    A stationary black hole must be axisymmetric in effective field theory

    Full text link
    The black hole rigidity theorem asserts that a rotating stationary black hole must be axisymmetric. This theorem holds for General Relativity with suitable matter fields, in four or more dimensions. We show that the theorem can be extended to any diffeomorphism invariant theory of vacuum gravity, assuming that this is interpreted in the sense of effective field theory, with coupling constants determined in terms of a ``UV scale'', and that the black hole solution can locally be expanded as a power series in this scale.Comment: 37pp, 1 figur

    Integration of algae-based biofuel production with an oil refinery: Energy and carbon footprint assessment

    Get PDF
    Biofuel production from algae feedstock has become a topic of interest in the recent decades since algae biomass cultivation is feasible in aquaculture and does therefore not compete with use of arable land. In the present work, hydrothermal liquefaction of both microalgae and macroalgae is evaluated for biofuel production and compared with transesterifying lipids extracted from microalgae as a benchmark process. The focus of the evaluation is on both the energy and carbon footprint performance of the processes. In addition, integration of the processes with an oil refinery has been assessed with regard to heat and material integration. It is shown that there are several potential benefits of co-locating an algae-based biorefinery at an oil refinery site and that the use of macroalgae as feedstock is more beneficial than the use of microalgae from a system energy performance perspective. Macroalgae-based hydrothermal liquefaction achieves the highest system energy efficiency of 38.6%, but has the lowest yield of liquid fuel (22.5 MJ per 100 MJalgae) with a substantial amount of solid biochar produced (28.0 MJ per 100 MJalgae). Microalgae-based hydrothermal liquefaction achieves the highest liquid biofuel yield (54.1 MJ per 100 MJalgae), achieving a system efficiency of 30.6%. Macro-algae-based hydrothermal liquefaction achieves the highest CO2 reduction potential, leading to savings of 24.5 resp 92 kt CO2eq/year for the two future energy market scenarios considered, assuming a constant feedstock supply rate of 100 MW algae, generating 184.5, 177.1 and 229.6 GWhbiochar/year, respectively. Heat integration with the oil refinery is only possible to a limited extent for the hydrothermal liquefaction process routes, whereas the lipid extraction process can benefit to a larger extent from heat integration due to the lower temperature level of the process heat demand

    Lifecycle energy and greenhouse gas emissions analysis of biomass‐based 2‐ethylhexanol as an alternative transportation fuel

    Get PDF
    This study investigates the environmental performance of 2‐ethylhexanol (2‐EH), as a potential drop‐in transport fuel alternative. Three different biomass‐based production pathways are evaluated and compared using life cycle assessment (LCA) methodology. The environmental impact of 2‐EH is assessed in terms of cumulative energy demand (CED) and global warming potential (GWP). Among the three alternative pathways, 2‐EH produced via syngas results in the lowest primary energy demand and GHG emissions under the baseline assumptions of this work. The two biochemical production pathways (via ethanol and butanol) exhibit higher CED and GWP during biomass conversion steps mainly due to process materials and chemicals used. Process specifications such as transport distance to production facility or the fate of the obtained by‐products are shown to influence the overall environmental impact of the fuel for all studied pathways. The use phase performance of 2‐EH was also considered in this work, as part of a 100% renewable blend and was compared to existing fossil and renewable fuels. The studied blend has the potential to reduce GHG emissions by more than 85% compared to fossil diesel while when certain production pathways are followed, it exhibits lower GWP than renewable fuels already in the market such as ethanol blends and biodiesel. 2‐EH can therefore provide a competitive alternative to fossil transport fuels increasing the share of renewable content in the current vehicle fleet, thus enhancing the efforts for a sustainable transport sector. Document type: Articl
    • 

    corecore