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Summary

Biofuel production from algae feedstock has become a topic of interest in the

recent decades since algae biomass cultivation is feasible in aquaculture and

does therefore not compete with use of arable land. In the present work,

hydrothermal liquefaction of both microalgae and macroalgae is evaluated for

biofuel production and compared with transesterifying lipids extracted from

microalgae as a benchmark process. The focus of the evaluation is on both the

energy and carbon footprint performance of the processes. In addition, integra-

tion of the processes with an oil refinery has been assessed with regard to heat

and material integration. It is shown that there are several potential benefits of

co-locating an algae-based biorefinery at an oil refinery site and that the use of

macroalgae as feedstock is more beneficial than the use of microalgae from a

system energy performance perspective. Macroalgae-based hydrothermal liq-

uefaction achieves the highest system energy efficiency of 38.6%, but has the

lowest yield of liquid fuel (22.5 MJ per 100 MJalgae) with a substantial amount

of solid biochar produced (28.0 MJ per 100 MJalgae). Microalgae-based hydro-

thermal liquefaction achieves the highest liquid biofuel yield (54.1 MJ per

100 MJalgae), achieving a system efficiency of 30.6%. Macro-algae-based hydro-

thermal liquefaction achieves the highest CO2 reduction potential, leading to

savings of 24.5 resp 92 kt CO2eq/year for the two future energy market scenar-

ios considered, assuming a constant feedstock supply rate of 100 MW algae,

generating 184.5, 177.1 and 229.6 GWhbiochar/year, respectively. Heat integra-

tion with the oil refinery is only possible to a limited extent for the hydrother-

mal liquefaction process routes, whereas the lipid extraction process can

benefit to a larger extent from heat integration due to the lower temperature

level of the process heat demand.
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1 | INTRODUCTION

Biofuels can be synthesized in many ways from a variety
of biomass feedstocks. One type of biomass feedstock of
high interest from a medium- to long-term perspective is
algae, which can be grown efficiently on nonarable land
or at sea. Algal biomass can be divided into microalgae
and macroalgae. Microalgae must be cultivated in discrete
containers to ensure efficient harvesting, whereas macro-
algae can be cultivated directly at sea. Traditionally, algae-
based biofuel production routes have mainly involved
lipid extraction (LE) for biodiesel production; thus, micro-
algae routes have been investigated to a greater extent due
to their larger share of lipids. Macroalgae have become
more interesting with the development of more advanced
routes, such as hydrothermal liquefaction (HTL) in which
a larger share of the algae feedstock including proteins
and carbohydrates can be utilized in the process. HTL can
utilize biomass with low dry solids contents, which is par-
ticularly useful for algae.

The present and emerging biofuel and/or biorefinery
concepts are of high interest to the industrial sector, striv-
ing for more sustainable process concepts including bio-
based feedstocks. Given the limited nature of biomass
resources, an efficient conversion is necessary, and both
use of waste streams as well as industrial excess heat
through process integration can help to improve process
performance. Within the oil refinery industry, being a sec-
tor with a considerable amount of excess heat available,
several options have been investigated to generate value-
added products and services by using the excess heat. For
example, Brau et al1 investigated process integration
aspects of hydrogen production from biomass via gasifica-
tion, and Johansson et al2,3 discussed the production of
Fischer-Tropsch diesel and the utilization of excess heat
to decrease the operating costs of carbon capture. Algae-
based fuel production is another option for heat integra-
tion with the oil refinery industry.

The present article describes a case study of the
potential synergy effects that can be achieved through
energy and material integration of three different algae-
based biofuel routes with an oil refinery. Both microalgae
and macroalgae are considered, and the concepts are
evaluated in terms of CO2eq emissions reduction potential
as well as energy efficiency.

2 | STATE OF THE ART

There is currently an increasing interest in investigating
innovative concepts for producing biofuels from algae feed-
stock. The focus has been mainly on microalgae, which
is area efficient to cultivate and can be cultivated on

nonarable land. However, problems with high water con-
sumption, nutrient cycle and CO2 balances have also been
reported.4-6 The main concern for algae cultivation is the
supply of nutrients. The energy and environmental impacts
of nutrient must be decreased, making use of, for example,
waste streams or areas with risk for eutrophication. Also,
all of the main steps in the algae process (cultivation,
extraction, transportation and combustion) have been iden-
tified as potential energy bottlenecks of algae biofuels.7-9

The present literature review focuses on work that pre-
sents data applicable to the modelling of HTL of micro-
algae and macroalgae feedstocks. The reader is referred
to a previous paper4 for further information about the bio-
diesel process used as reference process in the present
assessment.

Biller and Ross10 investigated the yields of oil from
HTL with different biochemical contents. They found that
biocrude formation followed the trend lipids>proteins>
carbohydrates and that carbohydrates are the only compo-
nents that benefit from using a catalyst. There are numer-
ous papers presenting yields and compositions for HTL of
different algae strains, mostly from microalgae, but also
from macroalgae, the most relevant to the present work
being presented in the following. Valdez et al11 developed a
kinetic model to predict the yield of biocrude, aqueous
phase, gas and solids as a function of the initial composi-
tion of microalgae. Rate constants were derived for four dif-
ferent temperature levels. Roberts et al12 compared the
biocrude yields of macroalgae and microalgae (grown
under the same conditions) and found that on a dry ash-
free weight basis, the yields of biocrude were similar both
in terms of energy density and elemental composition with
respect to carbon, hydrogen and oxygen.

Zhang et al13 compared anaerobic digestion and HTL
as measures for energy output and nutrient recovery to be
used in algae cultivation after first extracting lipids from
the microalgae. They concluded that more nitrogen was
recovered in the anaerobic digestion process, but HTL gen-
erated a larger recovery rate of phosphorus. They also con-
cluded that the HTL process yielded a larger recovery rate
of energy, despite the fact that the lipids were extracted
from the biomass. In an earlier study, Biller and Ross10

concluded that, in the HTL process, lipids yielded the
highest conversion from biomass to biocrude.

Seasonal variations in growth and composition of
Laminaria digitata and the implications for thermochem-
ical and biochemical biofuel production routes were
mapped by Adams et al.14,15 Their results show large vari-
ations in chemical composition throughout the year with
July giving the best yields for such different processes as
pyrolysis and fermentation to ethanol. Raikova et al16

analysed the effect of geographical location on biocrude
yields from macroalgae HTL, stating that significant
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variations in composition were observed between differ-
ent regions (Baltic and Atlantic), but even between sites
with close proximity. Localized conditions are considered
to affect HTL product composition significantly. Raikova
et al16 conclude that no single macroalgae species will be
globally dominant for biorefinery concepts, but rather
locally optimized species should be selected.

Tu et al17 compared the water consumption between
open pond cultivation and photobioreactors (PBR). They
concluded that PBRs consume less water than open ponds,
and that most of the water is required in the cultivation
and harvesting steps. They also concluded that water con-
sumption is higher for algae compared with land-cultivated
biomass. Venteris et al18 compared the water consumption
of LE and HTL, and concluded that the HTL route signifi-
cantly decreases the water consumption compared with LE
for the same amount of fuel produced (at least 33% fresh-
water and 85% saline groundwater). Lardon et al19 showed
that the water consumption is 35 LH2O/kWh when produc-
ing biodiesel via LE, but no comparison to HTL routes
was done.

There is only one study, to the authors' knowledge, that
addressed the water consumption for macroalgae produc-
tion.20 It states that, for seaweed production and pre-
treatment within the framework of biogas and ethanol
production, 5.8 L water per ton dry seaweed are consumed.

With respect to energy consumption and energy effi-
ciency of algae-based biofuel production processes, a
recent study on biodiesel and ethanol production from
microalgae identified algae dewatering/drying and lipid
extraction as process steps with the highest impact on
energy performance for biodiesel production, resulting in
a net energy deficit for the process as well as a larger car-
bon footprint than fossil pathways.8 Suparmaniam et al9

compared different technologies for microalgae cultiva-
tion and harvesting with respect to the capital and energy
intensity, and identified PBRs as being superior to open
pond cultivation, and proposed the use of waste bio-
masses as flocculation agents to improve harvesting pro-
cess performance.

Energy analyses of for algae-based biofuel production
routes are numerous,21,22 but these generally do not cover
energy integration opportunities such as using industrial
excess heat as a heat source. Frank et al23 compared the
energy balances of the LE and HTL routes and found that
a more efficient utilization of the whole algae biomass feed-
stock makes the HTL route more material efficient but
electricity and heat generation from the HTL route for cov-
ering internal demands only lead to an electricity export of
1% of the generated electricity, whereas for the LE route
14% of the generated electricity could be exported for the
base case. At biocrude yields for HTL above 0.4 g oil/g
algae, the internal electricity demand could not be covered

anymore, leading to electricity import. In their analysis, it
was also shown that more nitrogen was present in the HTL
oil compared with the lipid slurry in the LE route and that
this could be a problem, given that the nutrients were pro-
duced artificially and not recycled.

3 | OBJECTIVES

The objectives of this article are to investigate a possible
future algae-based biorefinery from a system perspective
and to assess potential integration opportunities with exis-
ting oil refineries. Heat recovery from the refinery for
improving the process energy efficiency as well as mate-
rial integration aspects (eg, use of hydrogen from the oil
refinery) are considered. HTL of both microalgae and
macroalgae are assessed and compared with LE and trans-
esterification for biodiesel production as a benchmark
process. The evaluation parameters considered are the
processes' energy balance and carbon footprint both on a
process level as well from an energy system perspective.
Comparing stand-alone operation to co-location and inte-
gration with an oil refinery, the possible benefits of pro-
cess integrated biofuel production are highlighted. The
process mass and energy balances are established based
on published literature data and models. Another impor-
tant objective of the present article is to illustrate the
advantages and drawbacks between biofuel production
pathways based on microalgae and macroalgae. The pre-
sent ex ante evaluation of algae biorefinery concepts does
not aim at presenting exact numbers for the different
routes evaluated, but rather at indicating interesting
development pathways to guide research and technology
development.24,25 Cost data for large-scale algae cultiva-
tion and harvesting systems are both scarce and incorpo-
rate a large level of uncertainty, as stated as by a recent
study trying to quantify the techno-economic uncer-
tainties of microalgae-based HTL.26 Economic aspects
therefore are excluded from the present article, the focus
being on energy and carbon footprint analyses.

4 | STUDIED SYSTEMS

The following three biorefinery routes were investigated
in this work:

R1 Biodiesel production from microalgae via LE and
transesterification. Downstream anaerobic digestion
was also considered for converting the remaining
carbon into biogas.

R2 HTL with a microalgae feedstock. Catalytic hydrother-
mal gasification (CHG) was considered for converting
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the remaining organic carbon in the aqueous phase
after HTL. The products are a biocrude similar to regu-
lar crude oil and biogas.

R3 HTL with a macroalgae feedstock. Catalytic hydro-
thermal gasification (CHG) was considered for con-
verting the remaining organic carbon in the aqueous
phase after HTL. The products are a biocrude similar
to regular crude oil, biogas and biochar.

R1 has been investigated in numerous studies and
was considered as a reference process, whereas R2 and
R3 are processes have only being investigated more
recently.

All three processes were investigated as stand-alone
processes as well as co-located with an oil refinery in order
to enable energy and material integration between the two
processes. An oil refinery located on the west coast of Swe-
den was considered for the integration study. The oil refin-
ery has large amounts of excess heat available that can be
used for heating of other processes located near the site. In
this analysis, the biofuel production processes were consid-
ered as the preferred excess heat recipients. Previous stud-
ies have shown that the heat demand of algae cultivation
fluctuates widely throughout the year, sometimes exceed-
ing the amount of available excess heat.4 In the present
study algae cultivation is marine-based, and the available
excess heat from the oil refinery can be used to supply the
heat demand of the biofuel production process. In this arti-
cle, only excess heat from the oil refinery that is currently
cooled to the surroundings was considered available for
use in the algae biofuel process, that is, no retrofitting to
improve the refinery's energy efficiency was considered. In
addition to the heat integration opportunities, there are a
number of potential benefits from integrating biofuel pro-
cesses with oil refineries. One option—that is considered
in the present study—is to use hydrogen produced at the
refinery. Even low-grade hydrogen at lower purity, that else
is used for heat supply, might be considered for use within
the biofuel production process.

The cultivation was assumed to be designed to gener-
ate a constant algae feedstock stream for the production
process, which creates both a steady flow of biofuel to the
market as well as a constant recipient of excess heat from
the refinery over the year. Designing the cultivation in
this manner is acknowledged to be uncertain because
algae (both microalgae and macroalgae) have different
growth rates during different periods of the year. A large
storage capacity for algae—avoiding degradation of the
biofuel process feedstock—will be necessary. The design
of such a system is a question that still needs to be
resolved and will affect the economic performance of the
concept. Nevertheless, constant operation of the biofuel
plant is important to maximize the process integration

benefits and to efficiently valorize the capital investment
by maximising operating hours and biofuel generation.

Cultivation and harvesting are the two most uncer-
tain steps of the process, both in terms of data gathering
for small systems and for the scale-up of the system. It
was assumed that all cultivation is marine based to avoid
competition with other land uses, such as food produc-
tion, other biofuel feedstock, housing, and so on.

For microalgae, a system in which algae are culti-
vated in PBRs (plastic bags) floating on the surface was
assumed.27 The difference in density between the cultiva-
tion liquid and the sea water keeps the bags on the sur-
face, and harvesting is performed through a pipeline
system. Nutrients (including CO2) must be added to the
system, and for sustainable cultivation, this probably
needs to be done via a natural source of nutrients (eg,
wastewater) and a well-functioning safety and recycling
system to avoid losses to the environment.28,29 The elec-
tricity demand also includes the pumping of nutrients
and dewatering of the algae.27

Macroalgae were assumed to be cultivated using long
lines, where the algae have been seeded in a sheltered envi-
ronment and then placed in the ocean for cultivation. The
algae are then harvested by ship, and up to 80% of the algae
can be harvested, while 20% remains on the line. Therefore,
re-seeding only has to be performed every fourth year.30

The electricity demand in the macroalgae process is due to
dewatering of the algae after harvesting and the use of a
hatchery where algae are grown in a sheltered environment
before they are placed in the ocean. In macroalgae cultiva-
tion, nutrients (including carbon) are taken from the ocean
and can, if recycled properly, reduce eutrophication. With
increased climate change, eutrophication of coastal waters
is forecasted to increase.31 Hence, the risk of nutrition
depletion is considered small but must be evaluated for
each case. The diesel demand of the process is due to the
use of barges when planting and harvesting the algae.
While microalgae can be harvested continuously through a
pipeline system, the use of barges for macroalgae harvesting
assumes that storage of harvested macroalgae must be
implemented to ensure a constant feedstock flow to the bio-
fuel process, but information regarding how such storage
would be accomplished in practice is scarce and must be
researched further. Due to seasonal variations, the need for
storage can be larger during some parts of the year.

The processes were evaluated in terms of energy effi-
ciency and carbon footprint in terms of CO2 equivalents
(CO2eq). Nutrient use and eutrophication potential of the
biofuel routes were also investigated because all three
routes have a residual slurry/solid that can be used for
nutrient recovery.

The algae strains chosen (Nannochloropsis and
Saccharina latissima) were the ones with most data
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available in literature. In the microalgae case, the toler-
ance to brackish- or seawater was also considered. The
purpose of the present ex ante evaluation is to identify
the process parameters affecting the energy efficiency
and carbon footprint of the process chains most. Further
studies evaluating the influence of using other strains on
overall process energy efficiency and carbon footprint
must be made in order to establish that these two strains
are the most suitable.

5 | METHODOLOGY

5.1 | System boundaries

A major impact on the energy efficiency of algae biofuel
processes stems from the cultivation of the feedstock.
Furthermore, some parts of the processes have a substan-
tial electricity demand. An expanded system boundary
was therefore used in the carbon footprint analysis so as
to capture emissions not taking place onsite. In this work,
all nutrients (including CO2) were assumed to be avail-
able. Nutrients were assumed to be recycled and re-used,
with a make-up flow consisting of transported sewage
sludge from a wastewater treatment plant. Transport of
the sludge is omitted in this article, since it is deemed to

have negligible impact. The nutrient supply is addressed
in the discussion. Figure 1 illustrates the major energy
and material streams as well as the system boundaries for
evaluation.

5.2 | Modelling parameters and
performance indicators

The three processes are inherently different, both in terms
of the technical aspects and in terms of technology readi-
ness level (TRL). Most algae research is focused on LE for
biodiesel production.7 Although the HTL route has been
investigated more frequently in recent years, it is still more
difficult to find data applicable to biofuel production
modelling for this route than for the LE route. Matlab and
Excel-based models were used to calculate the mass and
energy balances of the processes based on available data.
The process scale assumed was 100 MWHHV of algae bio-
mass feedstock for the stand-alone cases. Throughout this
article, algae biomass refers to the dried algae, including
the moisture that is bound within the cells. For microalgae,
the water content for dry substance is 7.2%,10 and for mac-
roalgae, it is 6.4%.32

For the co-locating and integration with the oil refin-
ery, the maximum possible plant size with respect to heat

FIGURE 1 Schematic illustration of energy and material flows for stand-alone and integrated processes as well as system boundaries

(process [white box] and overall energy system [light grey box] level) for the evaluation of the energy and carbon footprint performance of

the three algae-based biofuel routes [Colour figure can be viewed at wileyonlinelibrary.com]

ANDERSSON ET AL. 5

http://wileyonlinelibrary.com


integration with the refinery was also identified. The
overall assumptions and specifications for the different
process steps are given in Table 1.

In the following sections, the three algae biofuel pro-
cess concepts are described in detail.

5.2.1 | Lipid extraction (LE) biofuel
route (R1)

The modelling of R1 is described in detail in Andersson
et al4. The model was updated with the microalgae com-
position used in the present article. The algae slurry is
first dried in several stages (to 20 wt%) and is pretreated
in a stirred ball-mill before it enters the lipid extraction
process, where butanol is used as the extracting fluid.
After removal of butanol by distillation, the lipids are
transesterified using methanol (MeOH) at a ratio of 6:1.33

The by-product glycerol is fed to the digester for co-
processing with the algae residues, while the transesterified
lipids are mildly hydrotreated. The lipid biofuel is assumed
to be free of polar lipids and pigments which would oth-
erwise have made more upgrading steps necessary, as
described in Davis et al.34 Heat demands are taken from
Pokoo-Aikins et al.33

The basic process layouts for R1 are outlined in
Figure 2.

5.2.2 | Hydrothermal liquefaction (HTL)
biofuel route (R2 and R3)

The HTL process model was based to a large extent on
Jones et al,35 Frank et al,23 Valdez et al11 and Anastasakis
and Ross.32 The process layout itself as illustrated in
Figure 3 was adopted from Frank et al,23 which was

TABLE 1 Assumptions for process units within the three biofuel routes

Energy demand/
conversion Unit Used in Source

Microalgae cultivation and harvesting 5.4 kWhel/kgalgae R1, R2 Verhein27

Macroalgae cultivation and harvesting 1.65
0.7

MJel/kgalgae
MJdiesel/kgalgae

R3 Aitken et al52; Langlois et al30

Lipid extraction 0.24 kWhel/kgalgae R1 Khoo et al53; Xu et al54

Transesterification 0.1 MJel/kgoil R1 Pleanjai and Gheewala55

Anaerobic digestion (mixing) 0.39 MJel/kgalgae R1 Collet et al56

HTL + CHG 0.8/0.9
0.23

MJheat/kgalgae
MJel/kgalgae

R2/R3
R2, R3

Edwards et al37; Frank et al23

Hydrogen demand hydrotreater 0.0217 gH2/gbiocrude R1 Davis et al34

Hydrogen demand hydrotreater 0.0375 gH2/gbiocrude R2, R3 Jones et al35

Conversion hydrotreater 0.8 gbiodiesel/gbiocrude R2, R3 Frank et al23

Biogas upgrade 4.2 MJel /m
3
upgraded R1, R2, R3 Götz et al57

FIGURE 2 Overview of the

reference biodiesel process route (R1)
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further developed and evaluated experimentally in Jones
et al.35 The process route consists of HTL followed by CHG
with electricity and heat energy demands stated as specific
values per energy unit of biofuel produced. In order to
adopt the numbers to the conditions in the present work,
the energy demands were recalculated to feedstock specific
numbers. The original values were recalculated to be spe-
cific to dry algae mass processed. It is assumed that the
electricity requirements are mostly affected by the dry algae
mass processed, thereby allowing to rescale the numbers to
the present processes.

The same process concept was assumed for both
microalgae and macroalgae, although the yields of prod-
ucts are different. The reaction temperature for the HTL
process is 350�C, and the reaction time is 15 minutes.11,32

For a detailed description of the process, see Jones et al.35

The product specifications for R2 were calculated using
the algae strain of Nannochloropsis, a marine microalgae
with a relatively high lipid content.10 The yields of different
products were calculated using the kinetic model devel-
oped by Valdez et al.11

The product specifications for R3 were taken for Lami-
naria saccharina (also known as Saccharina latissima).32,36

The information gathered includes biocrude HHV, yield of
the different products and composition of the algae.

The yields from R2 and R3 were assumed to corre-
spond to the same retention time (15 minutes) and tem-
perature (350�C). The yields from R3 were taken from
the literature, but R2 was modelled with input from Biller

and Ross.10 Kinetic data from Valdez et al11 were used
and applied to the algae input of Biller and Ross.10

The HTL routes for microalgae and macroalgae R2 and
R3 rely on a similar process concept, but variations occur due
to differences in feedstock composition, in which affects the
biocrude yield. Therefore, the electricity and heat demands
for the twoHTL process routes differ to some extent.

5.2.3 | Performance indicators

The efficiency of the processes was evaluated in relation
to the primary energy input necessary to generate the
products. Two different definitions were applied:

• Process efficiency, only accounting for energy streams
related to the biofuel conversion processes:

ηprocess

=

P
i _mi �HHVi

_malgae �HHValgae +
_W el,proc

f prim,el
+

_Qproc

f prim,q
+
P

j
_mj,proc�HHVj,proc

f prim,j

:

ð1Þ

• System efficiency, taking into account all energy
streams related to the algae-based biorefinery system
including cultivation and harvesting:

FIGURE 3 Overview of the

combined HTL and CHG processes (R2

and R3). Flowsheet adopted and

modified from Frank et al23

ηsystem =

P
i _mi �HHVi

_malgae �HHValgae +
_W el,proc

f prim,el
+

_Qproc

f prim,q
+
P

j
_mj,proc�HHVj,proc

f prim,j
+

_W el,harv

f prim,el
+
P

k
_mk,harv �HHVk,harv

f prim,k

, ð2Þ
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where i denotes the product streams, j and k denote the input
streams to the biofuel production process, respectively,
to the cultivation and harvesting (ie, hydrogen, methanol
and diesel). _m refers to mass flows, HHV to mass-specific
higher heating values, _W el to electric power and _Q to
heat flow. Proc denotes the biofuel production process
demands, and harv denotes the cultivation/harvesting
demands. fprim refers to the primary energy conversion
factors for the respective energy carrier/service.

The distinction between the two efficiency definitions
is made to illustrate which parts in the overall biofuel sys-
tem are the major obstacles for efficient biofuel production
from an energy perspective. For example, a high ηprocess
but low ηsystem indicates necessary research efforts within
the cultivation and harvesting processes to improve the via-
bility of the overall process concept. Changes for ηprocess
between stand-alone cases and co-located plants that are
integrated with the oil-refinery reveal potential process
integration benefits.

The energy content (HHV) of each energy carrier was
recalculated to primary energy input, accounting, for exam-
ple, for the electricity generation efficiency or conversion
losses during production of fuels. The base case primary
energy conversion factors are found in Table 2 together with
HHV values for all relevant energy streams considered in
the article. For hydrogen for example the low value of 0.22
is a combination of the primary energy conversion factor
for electricity and the efficiency of the electrolysis process.
The values are based on Edwards et al37 and converted from
LHV to HHV basis. As algae-based biofuels are considered
a future technology, their evaluation must take into account
future changes within the energy system. Changing primary

energy conversion factors (as given in Table 2) for specific
energy carriers, it is possible to estimate the influence on
the algae biofuel process efficiency for the three routes
investigated. Two relevant conversion factors—fprim,el and
fprim,H2—were therefore varied in a sensitivity analysis to
quantify the impact they have on the results.

The evaluation of the emission consequences (per
100 MJalgae) for the three process routes from a system per-
spective (as illustrated in Figure 1) was based on Equation 3:

ΔCO2,tot

=ΔCO2,ff +ΔCO2,proc =ΔCO2,el +ΔCO2,heat +ΔCO2,matf g,
ð3Þ

where ΔCO2,ff denotes the CO2eq emissions reduction for
burning a biofuel (assumed CO2-neutral) instead of fossil
fuel, and ΔCO2,proc denotes the CO2eq emissions associated
with the process. ΔCO2,proc is the sum of ΔCO2,el (CO2eq

emissions from electricity generation), ΔCO2,heat (CO2eq

emissions from heat generation) and ΔCO2,mat (CO2eq emis-
sions related to material input, such as hydrogen, methanol,
or diesel). The multiple products from the processes were
assumed to replace fossil alternatives, namely, diesel (bio-
diesel), natural gas (biogas) and coal (biochar). Alternative
applications to combustion of biochar with a potentially
higher market value include its use as a catalyst for trans-
esterification38 or as a soil enhancer,39 but were not consid-
ered in the present analysis.

As algae biofuels are a medium- to long-term solu-
tion, it is more appropriate to assess the CO2 emissions
consequences based on future energy systems and their

TABLE 2 HHV values and

conversion factors for the calculation of

the primary energy input to the algae

biofuel process

Material HHV Unit Reference

Microalgae 16.8 MJ/kg db Sukarni et al58

Macroalgae 12.2 MJ/kg db Anastasakis and Ross32

Biodiesel (R1) 37.8 MJ/kg Pokoo-Aikins et al33

Renewable diesel (R2) 34.5 MJ/kg Biller and Ross10

Renewable diesel (R3) 33.2 MJ/kg Anastasakis and Ross32

Biochar (R3) 17.2 MJ/kg Anastasakis and Ross32

Biogas 39.3 MJ/m3 Ehimen et al59

Hydrogen 142.2 MJ/kg Edwards et al37

Methanol 22.9 MJ/kg Edwards et al37

Energy carrier/service Primary energy conversion factor (HHV-basis)

Heat: fprim,q 0.63 MJ/MJprimary energy Edwards et al37

Electricity: fprim,el 0.33 MJ/MJprimary energy

Diesel: fprim,Diesel 0.83 MJ/MJprimary energy

Hydrogen: fprim,H2 0.22 MJ/MJprimary energy

Methanol: fprim,MeOH 0.59 MJ/MJprimary energy
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associated emissions. The International Energy Agency
(IEA) has developed different policy-based scenarios for
future fuel and CO2 emission price levels.40 Based on these
scenarios, Harvey and Axelsson41 developed the Energy
Price and Carbon Balance Scenarios tool (ENPAC) to deter-
mine build margin electricity technology and the associated
CO2eq emissions for a future North European energy mar-
ket context. In the present work, two of the three IEA sce-
narios of World Energy Outlook 201840 for the year 2030—
“New Policy” and “Sustainable Development”—were used
as input to ENPAC to create a span wherein the actual
emissions can be expected to lie. The ENPAC tool allows
to adjust the scenarios by making distinct choices. For
example, it is possible to choose whether nuclear or wind
power is available as build margin technologies, as well as
whether carbon capture and storage (CCS) technology will
be in place or not. The emission factors for the two scenar-
ios that can be found in Table 3 were obtained when all of
the aforementioned options were disabled. Enabling them
changes the build margin technology as well as the associ-
ated emissions of certain electricity generation technolo-
gies. The consequences of these options for the evaluation
of the algae biofuel processes investigated are discussed on
a qualitative level in the results section. The CO2eq conse-
quences of replacing fossil fuel with biofuel, as well as the
emissions from heat generation with a natural gas boiler
(NB), must also be quantified, with the relevant emissions
factors presented in Table 3. The build-margin technology
for electricity generation in the “New Policy” scenario is
coal-based, and natural gas combined cycle (NGCC) power
for the “Sustainable Development” scenario.

5.3 | Process integration

Both heat and material integration opportunities were
investigated within the present work. The possible

benefits of using excess heat from a co-located oil refinery
for heat integration of the biofuel process were investi-
gated using pinch analysis to determine the minimum
utility demands for the process as well as where the pro-
cess has a surplus or a deficit of heat.42 In this work, the
main focus was on the use of background/foreground
analysis which depicts the theoretical amount of heat
from a background process (the oil refinery) that can be
re-used in the foreground process (the biofuel process).
For an extensive description of the method, see Smith43

or Klemes et al.44 The heating and cooling demands of
the three biofuel routes were mapped assuming maximal
heat integration within the process. Given the heat load
profile of the oil refinery, it is possible to determine the
maximum scale of the biofuel process with respect to
heat integration with the refinery.

Excess heat can be collected from all over the refinery
through a pipeline system consisting of two trunk pipelines
(one feed and one return) to satisfy the heat demands of
the algae biofuel process routes.45

Regarding material integration, there are potential
benefits for both the biofuel plant and the oil refinery.
Refineries have complex hydrogen distribution systems,
and the refinery processes require hydrogen with high
purity. Hydrogen streams with purities as high as 80% to
90% are not used in the refinery processes, but are instead
treated as waste streams, which go to the fuel gas system
and are used for heating the processes.46 These streams
could instead be used in the upgrading of crude biofuel
to biodiesel, resulting in a major impact on the energy
performance of the biofuel plant. If the hydrogen waste
streams from the refinery cannot be used, the biofuel pro-
duction plant can still make use of the steam reformer
that is often present at a refinery for hydrogen produc-
tion. Steam reforming is a more efficient way of produc-
ing hydrogen than electrolysis, but as algae-based biofuel
is a future system and electrolysis is the predicted hydro-
gen production technology in a sustainable future it
is used for the standalone case.47 The results of a sensitiv-
ity analysis regarding hydrogen production technology
are presented in Section 6.2 since the choice of hydrogen
production technology depends heavily on the time
perspective.

For microalgae cultivation, CO2 must be supplied.
Flue gases from the refinery could supply this CO2.

48,49

When cultivating other plants, for example, greenhouse
vegetables, natural gas is often used as a CO2 source for
enhanced crop yield.50 This natural gas flue gas is inter-
changeable with industrial flue gases from a refinery.
This requires a close proximity between the refinery and
the algae cultivation. The flue gas is transported via pipe-
line to the algae cultivation where it is injected into
the PBRs.

TABLE 3 CO2eq emission factors used in this study (based on

IEA,40 Harvey and Axelsson41 and Edwards et al37)

CO2eq emissions
(kg/MWhHHV)

Electricity generation “New Policy” 80540,41

Electricity Generation “Sust. Dev” 37640,41

Heat generation (NB) 24340,41

Diesel 26640,41

Natural gas 22440,41

Coal 39040,41

Hydrogen “New Policy” 104737,40,41

Hydrogen “Sus. Dev” 48937,40,41

Methanol 32037
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6 | RESULTS

6.1 | Energy balance and carbon
footprint

All processes considered in the present analysis generate
multiple products. R1 and R2 have two valuable products—
biodiesel and biogas—whereas R3, in addition to biodiesel
and biogas, also produces biochar. The liquid biofuel pro-
duction (on an HHV basis) from 100 MJ algae feedstock is
largest for R2 (54.1 MJ), followed by R1 (38.4 MJ) and R3
(22.5 MJ). For R3, biochar is the dominant energy product
(28.0 MJ), in addition to biodiesel (22.5 MJ) and biogas
(21.6 MJ). Figure 4 illustrates the energy input and output
for the three routes. The losses represented in the figures
include heat losses, side streams and the remaining slurry
that contains nutrients such as nitrogen and phosphor.

The macroalgae-based process route R3 is the only
one having a fossil diesel demand due to the harvesting
by ship. For the two other processes cultivation and
harvesting only requires electricity. The process and sys-
tem efficiency, as well as the CO2eq balance for the three
processes investigated are illustrated in Figures 5 and 6.

Due to the low electricity demand, R3 is the only route
that has a net CO2 reduction for both scenarios. The lower
electricity demand for R3 is due to lower demands on
macroalgae cultivation and harvesting, but in terms of
CO2, the difference is partly counteracted by the demand
for fossil diesel in the harvesting process. On the other
hand, a large impact on the CO2 balance for R3 is due
to the biochar replacing coal. When aiming at producing
liquid transportation fuels, R3 is probably not the opti-
mum process, even though it achieves the highest system
efficiency and CO2 reduction. Considering the differences
between process and system efficiency, R3 differs by
13%, whereas R1 and R2 differ by 20% and 19%, respec-
tively. That implies that cultivation and harvest have a
larger impact on the decrease in efficiency and should be
analysed in further detail for microalgae-based processes.

The three routes can be heat integrated to varying
degrees. As heat integration only affects the heat demand
of the process, all the remaining output of the processes
are unchanged. The changes are most visible in the effi-
ciency and in the process-related CO2 emissions. Figures 5
and 6 show the size and performance for a stand-alone
plant (at assumed 100 MWHHValgae feed scale), for a
plant at maximum size with respect to complete heat
integration—scaled to cover its complete heat demand
with excess heat from the oil refinery-, as well as for a
plant of 100 MWHHValgae scale that is heat integrated to
the oil refinery to a maximum extent for all three routes.

The available excess heat from the oil refinery allows for
heat integration of a large (350 MWalgae feedstock) LE plant

based on R1, whereas for the HTL routes the available
heat at the necessary temperature levels limits the size of
completely heat integrated plants to 35 resp 29 MWalgae

feedstock for R2 resp R3. Complete heat integration

FIGURE 4 Sankey diagrams illustrating the energy input and

output for the three process routes investigated [Colour figure can

be viewed at wileyonlinelibrary.com]
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improves the process efficiency ηprocess by 8.6, 2.7 and
4.9%-points for R1, R2 and R3, respectively. Assuming a
100 MWalgae feedstock plant, the increase in process effi-
ciency is less for R2 and R3 due to limits in heat integration,
dropping to 1.7 resp 1.4%-points. The increase in system effi-
ciency is less with similar trends. This is to be expected as
the cultivation and harvesting are not subject to heat inte-
gration but are accounted for in the system efficiency.

The CO2 reduction obtained from heat integration is
best illustrated by the annual numbers for a 100 MWalgae

plant, assuming 8200 hours/year operating time (see
Figure 6). A reduction of 28.5 kt CO2eq/year is estimated
to be achieved for R1, whereas R2 and R3—only allowing
for heat integration of part of the process—result in
minor decreases of 3.5 resp 4.3 kt CO2eq/year comparing
stand-alone and integrated biofuel processes. This applies
to both energy scenarios investigated as the heat savings
from integration directly translate to natural gas savings
for both scenarios. Heat integration improves the process
performance both from an energy and CO2eq emission
perspective, but the effect of the surrounding energy
system is dominant for the carbon footprint evaluation.
Integration can only improve the performance but not
change a negative CO2eq performance (positive ΔCO2tot)
into a positive one (negative ΔCO2tot).

To further illustrate how the biofuel processes
can be heat integrated with the refinery, a background/
foreground analysis is depicted in Figure 7 for the
100 MWalgae feedstock case. The red line represents the
aggregated excess heat from the refinery that is available
for process integration—the background process—and
does not change between the different cases. The blue

line represents the heat load profile of the biofuel process
pathways that are to recover the excess heat from the
refinery. The overlap between the red line and the blue
line represents the maximum amount of heat that can be
recovered by heat integration. In order to enhance read-
ability, the x-axis has been scaled between the different
processes but represents the same background (the excess
heat from the oil refinery) for all cases.

The heat integration analysis shows that R1 can be
completely integrated with the refinery, basically due to
the lower temperature level of the LE process. Given the
excess heat load profile from the refinery, there even is
potential for a larger LE process with an upper limit of
350 MWHHValgae feedstock. For R2 resp R3, only approxi-
mately 2 MW of excess heat at sufficiently high tempera-
ture are available to cover approximately 40% of the
heating demand of a 100 MWHHValgae scale process. Such
a limited heat integration potential can hardly motivate
building an extensive heat recovery network. However,
further analysis of the refinery heat data shows that all of
the heat that can be recovered to R2/R3 is from a single
heat source, namely, one of the chimneys. The chimney
is also conveniently located close to the possible location
of the biofuels production process.45 Heat integration of
process routes R2 and R3 is therefore still considered a
viable option.

In addition to heat integration opportunities, there
are also mass integration aspects be considered. As men-
tioned previously, there are co-location benefits of using
CO2 from the refinery flue gases for microalgae
cultivation. Furthermore, the production of biogas from
the biofuel processes can partly satisfy the natural gas

FIGURE 5 Process and system

energy efficiency (ηprocess and ηsystem
according to Equations (1) and (2)) for

the three algae-biofuel process routes.

The three cases represented for each

route are: stand-alone

(100 MWHHValgae), maximum heat

integration (for which the size is

determined so as to achieve maximum

possible heat integration) and

100 MWHHValgae process heat integrated

to maximum extent, respectively

[Colour figure can be viewed at

wileyonlinelibrary.com]
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demand of the refinery, and the biofuel plant can benefit
from large-scale fuel processing infrastructure for their
produced biodiesel. Additionally, the biofuel plant can
use hydrogen from the refinery to improve the process
efficiency. One scenario could be if the hydrotreater
within the biofuel process could use low- to medium-
grade hydrogen that is available from the refinery, but
even hydrogen produced at the refinery via steam
reforming could be used instead of hydrogen from

electrolysis. Direct feed of the biocrude to the refinery for
hydrotreatment in the refinery's equipment would be
another option.

6.2 | Sensitivity analysis

The primary energy conversion factors have a large
impact on both process and system efficiency. As

FIGURE 6 CO2eq balance

(according to Equation (3)) for

the three algae-biofuel process

routes for the two future energy

scenarios—A, New Policy

and, B, Sustainable

Development. The three cases

represented for each pathway

are: stand-alone

(100 MWHHValgae), maximum

heat integrated (size being a

function of maximum possible

heat integration) and

100 MWHHValgae process heat

integrated to maximum extent,

respectively. The total annual

change in system CO2eq

emissions is represented for the

100 MWHHValgae cases,

assuming 8200 hours annual

plant operation [Colour figure

can be viewed at

wileyonlinelibrary.com]
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hydrogen is produced at the refinery and even available
as low-grade product used as fuel for steam generation, it
is important to investigate how the overall primary
energy efficiency changes with changing conversion fac-
tor. Hydrogen via electrolysis has a low primary energy
conversion factor of about 0.22 (see Table 2). Assuming
steam-reforming of natural gas—common technology
at the refinery investigated for co-location—the factor
increases to 0.5 to 0.55 (Edwards et al37). Low-grade
hydrogen at too low purity for use within the refinery is
currently used for steam generation, thus assuming the
option of utilizing this hydrogen within the biofuel pro-
duction process, using a conversion factor close to that of
heating (0.63 [Edwards et al37]) could even be argued for.

Even the conversion factor for electricity is an impor-
tant variable to investigate, as it increases with a presumed
increase share of renewables, such as wind or solar. With
algae biofuels being a medium- to long-term technology,
the analysis of the influence of changing conversion
factor for electricity is of great interest. The dependence of
these two conversion factors on the efficiency is shown in
Figure 8, the lower level for both variables being the base
case values for stand-alone operation (see Figure 5).

Both conversion factors noticeably affect the efficien-
cies. The electricity conversion factor has a higher impact
on the system efficiency than the hydrogen conversion
factor. For the electricity intensive microalgae cases,
R1 and R2, the system efficiency is affected more than
the process efficiency, whereas for R3, the process and
system efficiencies are affected similarly. When changing
the primary energy conversion factor for electricity to 0.9
(representing an electricity mix with very high degree of
renewable energy, for example, wind power having a pri-
mary energy factor of 1) ηsystem increases by 15, 11, resp
7%-points for R1, R2, resp R3. The microalgae-based

biodiesel process (R1) has the highest system efficiency
(61.9%) assuming renewable electricity from wind and an
associated primary energy conversion factor of 0.9.

The process efficiency is affected more than the sys-
tem efficiency when investigating the hydrogen conver-
sion factor. The process efficiency of R2—having the
highest hydrogen demand—is obviously improved most,
increasing by 11%-points, assuming that all of the hydro-
gen supply can be covered by low-grade hydrogen from
the refinery, for example, the primary energy conversion
factor for hydrogen corresponding to heating (0.63 MJH2/
MJprimary energy). The system efficiency increases by 2%-
point (R1 and R3) to 4%-points (R2) for the same change
in primary energy conversion factor for hydrogen.

7 | DISCUSSION

Previous work on algae biofuel production has focused
mainly on microalgae, with macroalgae-based processes
only being investigated recently. Conducting a comparative
study on the suitability of microalgae and macroalgae was
therefore one of the main driving forces of this work. It was
shown that the macroalgae-based HTL route (R3) achieves a
larger CO2 reduction than both micro-algae-based processes
(R1 and R2). This is even valid when heat integration syner-
gies are taken into account. The lipid extraction process (R1)
benefits most from heat integration but the HTL process
from macroalgae leads nonetheless to a higher reduction of
CO2 emissions. A potential drawback of the macroalgae-
based process is the product distribution. Because approxi-
mately 97% of transport vehicles today run on liquid fuels,
refinery operators typically produce liquid fuels to ease the
transition towards biofuels and to use existing infrastructure.
HTL from macroalgae produces approximately 70% less

FIGURE 7 Illustrations of heat integration of the algae biofuel processes (100 MWHHValgae) with the refinery. The overlap between the

red line (the refinery hot streams that need to be cooled) and the blue line (the biofuel process) is the amount of heat that can be reused

[Colour figure can be viewed at wileyonlinelibrary.com]
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liquid fuel compared with HTL from microalgae and 65%
less compared with traditional LE. The integration of all pro-
cesses with an oil refinery still has a multitude of potential
benefits in addition to heat integration. As an example, at an
oil refinery existing hydrogen generation infrastructure—
most often methane steam reformer technology—could be
used as hydrogen source for the processes. In addition, the
biogas generated from the biofuel process could substitute
parts of the natural gas feed to the steam reformer at the
refinery. R3 also produces biochar, which is considered as an
energy product in this article, but it could also have other
uses. Biochar is potentially a high-value product and could
be used as a catalyst in the transesterification process.38

When comparing the energy demands of the two
main process routes—LE and HTL—the major difference
is the temperature levels and the resulting heat integra-
tion opportunities with the oil refinery. Again, R1 bene-
fits to a larger extent from heat integration as the heat
demand can be fully covered with excess heat. The recov-
ered heat amounts to 45 MW for R1, compared with
2 MW for R2/R3, for a plant size of 100 MWalgae.

The process scale of 100 MWalgae feed might however
put other limitations than heat integration on the process
design. Preliminary estimates show that for a cultivation
corresponding to 100 MW of microalgae biomass, an area
of approximately 27 km2 (see note 11) would be needed
for cultivation. The cultivation must be near the shore
because nutrients need to be pumped out via pipelines,
and the cultivation must also be near the biofuel produc-
tion site because microalgae have a dry solids content of
approximately 5% when harvested, which would require
large pipelines for transport. The need for pipelines results
in logistical and spatial problems. For macroalgae, a

cultivation size of approximately 54 km2 (see note 22)
would be required to generate a feedstock flow of
100 MW. Macroalgae cultivation does not have the same
requirements regarding proximity to nutrients, but it is
still most convenient to perform the cultivation close to
the shore.

The overall system efficiency depends to a large extent
on the primary energy conversion factors assumed. The
lowest conversion factor is attributed to hydrogen, assumed
to be produced using electrolysis in the base case. Assum-
ing a conversion factor similar to that for heat (0.63 MJ/
MJprimary energy) for hydrogen, results in an increase in the
system efficiency of routes R2 and R3 (standalone unit) of
5%. This could be motivated if the biofuel process can
make use of low-grade hydrogen currently being used for
steam generation. The utilization of excess hydrogen from
the refinery processes therefore has a noticeable impact on
the efficiency of biofuel production. In a similar way—if
integrated with a refinery—the hydrogen could be pro-
duced in a steam reformer, thus having a higher conver-
sion rate from primary energy than electrolysis (circa
0.5 MJ/MJprimary energy). This would result in an increase in
system efficiency increase of 2% for R1 and R3, and an
increase of 4% in R2. Combining heat integration and more
efficient hydrogen generation would further increase the
efficiency.

A larger impact on the efficiency is attributed to the
electricity generation. The conversion factor used as a base-
line in this article is based on a high degree of thermal elec-
tricity generation, but a realistic future conversion factor
depends on many factors, such as whether to choose build
margin or average electricity mix as reference, as well
as the general future development in the electricity

FIGURE 8 Sensitivity analyses for the dependence of the efficiency (process efficiency for biofuel production on the electricity

conversion factor fprim,el (A) and the hydrogen conversion factor fprim,H2 (B) for stand-alone biofuel plants for the three investigated

pathways. Symbols represent the base case values [Colour figure can be viewed at wileyonlinelibrary.com]
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generation sector. The reference technology may have a
higher efficiency as well as decreased specific CO2 emis-
sions. To account for this, the analysis included two scenar-
ios for determining build margin technology based on
input data from IEAs World Energy Outlook. Only the bio-
fuel process based on macroalgae resulted in net CO2 emis-
sion reduction for both scenarios. The two microalgae
process routes only showed CO2eq emission reductions for
the "Sustainable Development" scenario, indicating that
more stringent policy instruments for CO2 reduction, and a
less CO2 intensive electricity generation are both necessary
for these alternatives to become viable from an emission
reduction perspective. Additionally, more energy-efficient
cultivation and harvesting methods need to be developed
because they have a larger impact on the system efficiency
of the microalgae process alternatives.

With respect to CO2 emissions from electricity genera-
tion, allowing for CCS as a technology choice within the
ENPAC tool could be motivated given possible future devel-
opments (see Section 5.2). Enabling CCS as an option, it
will be the build margin technology of choice for electricity
generation for the “Sustainable Development” scenario.
This change, however, does not alter the robustness of the
different biofuel production routes. For the “Sustainable
Development” scenario, a larger CO2 reduction is obtained
due to CCS-implementation, but for the “New Policy”
scenario, R1 and R2 do not result in CO2 reduction because
CCS technology is not used as the build-margin technology.

There are of course more aspects in addition to
energy efficiency and CO2 consequences to algae biofuel pro-
cesses that have not been quantified in this work, such as
technoeconomic, other environmental, as well as social
aspects. Macroalgae do not need to be supplied with nutri-
ents in the way that microalgae do; macroalgae reduce
eutrophication by removing nutrients from the ocean. When
implementing cultivation corresponding to 100 MWHHValgae,
the macroalgae takes up nutrients equivalent to the
wastewater treatment of a city of 600 000 inhabitants.4,51

This creates an incentive from a governmental perspec-
tive to grow algae in oceans that are heavily eutrophic,
for example, the Baltic Sea. Microalgae, on the other
hand, require nutrients to keep the algae growing. To
maintain a sustainable cultivation, nutrients would have
to be supplied from, for example, wastewater treatment. If
the cultivation needs to be close to a CO2 source, wastewa-
ter source, and a heat source to be sustainable, the number
of possible locations decreases. If algae cultivation could
replace some of the wastewater treatment, which would
require the cultivation to be located close to a city, both
the carbon and energy balances would change.4 This cre-
ates added uncertainty regarding the effects of the cultiva-
tion of both microalgae and macroalgae on the overall
system efficiency and carbon dioxide balances.

8 | CONCLUSIONS

The results of this study indicate that there are several
potential benefits of co-locating an oil refinery and an
algae-based biorefinery and that the use of macroalgae as
feedstock is more beneficial than the use of microalgae
from a system energy performance perspective. Some of
the main findings, given the underlying assumptions
used in this article, are listed below:

• Due to a less energy-intensive harvesting process, the
macroalgae-based route has a larger CO2 reduction
potential and a higher system energy efficiency.

• The electricity demand for macroalgae cultivation and
harvesting is lower (15.7 MWel for R3 compared with
40.5 MWel resp 33.9 MWel for the microalgae-based
processes R1 and R2 for a 100 MWHHValgae scale pro-
cess), which has a major impact on all results for effi-
ciency and CO2 reduction potential.

• Due to high electricity consumption, the sustainability
of microalgae cultivation is very dependent on the car-
bon intensity of electricity.

• Assuming IEAs scenario for "Sustainable Development,"
all process routes result in a net CO2 reduction ranging
from 14.2 to 96.3 kt COeq/year for a 100 MWHHValgae

scale plant.
• Heat integration reduces the net energy demand for

the biofuel processes; the size of a fully heat integrated
plant is considerably larger for the route with lipid
extraction and subsequent anaerobic digestion (R1)
than for routes with HTL (R2 and R3), where rather
high temperature levels of the heat demand limit the
integration opportunities.

• The yield of liquid biofuel is highest for the microalgae
based HTL route (R2), generating 54.1 MJ of biodiesel
from 100 MJ algae feedstock, making this route particular
attractive for production of, for example, liquid biofuels
for transport. With respect to integration with an oil-
refinery, this might make this process more appealing for
a refinery than macroalgae-based HTL that generates a
large stream of biochar at the cost of liquid biofuel yield.

• The possible utilization of waste hydrogen has a positive
impact on the efficiency of all three processes, and low-
grade hydrogen from the refinery that is otherwise used as
boiler fuel could therefore be used for material integration.

• Future research for improving algae-based biofuel pro-
cess performance should focus on cultivation and
harvesting technologies; this research is important for
further comparisons between microalgae and macro-
algae. In particular, improved knowledge about nitro-
gen and phosphor balances is important to determine
the environmental performance of the processes in
addition to their energy performance.
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• The issue of being able to supply a continuous biofuel
process operating all year round with algae feedstock—
that is harvested periodically—has not been addressed
in this article but is an important aspect, in particular
when considering integrating the biofuel plant with exis-
ting infrastructure. More research on possibilities for
storage and continuous harvesting is needed to come up
with solutions to this problem.
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ENDNOTES
1 Based on average growth rate 17.5 dry g/m2/day over the year
(35 dry g/m2/day obtained in PBRs the Mediterranean area,27

12 dry g/m2/day estimated for open pond cultivation under Scan-
dinavian conditions4).

2 Based on an average yield of 45 t dry mass/h/year (estimate for an
optimized macroalgae cultivation60).

REFERENCES
1. Brau JF, Morandin M, Berntsson T. Hydrogen for oil refining

via biomass indirect steam gasification: energy and environmen-
tal targets. Clean Technol Environ Policy. 2013;15(3):501-512.
https://doi.org/10.1007/s10098-013-0591-9.

2. Johansson D, Franck PÅ, Pettersson K, Berntsson T.
Comparative study of Fischer-Tropsch production and
post-combustion CO2 capture at an oil refinery: economic
evaluation and GHG (greenhouse gas emissions) balances.
Energy. 2013;59:387-401. https://doi.org/10.1016/j.energy.
2013.07.024.

3. Johansson D, Franck PÅ, Berntsson T. Hydrogen production
from biomass gasification in the oil refining industry—a system
analysis. Energy. 2012;38(1):212-227. https://doi.org/10.1016/j.
energy.2011.12.011.

4. Andersson V, Broberg Viklund S, Hackl R, Karlsson M,
Berntsson T. Algae-based biofuel production as part of an
industrial cluster. Biomass Bioenergy. 2014;71:113-124. https://
doi.org/10.1016/j.biombioe.2014.10.019.

5. Schenk PM, Thomas-Hall SR, Stephens E, et al. Second genera-
tion biofuels: high-efficiency microalgae for biodiesel produc-
tion. Bioenergy Res. 2008;1(1):20-43. https://doi.org/10.1007/
s12155-008-9008-8.

6. Tian C, Li B, Liu Z, Zhang Y, Lu H. Hydrothermal liquefaction
for algal biorefinery: a critical review. Renew Sustain Energy
Rev. 2014;38:933-950. https://doi.org/10.1016/j.rser.2014.07.030.

7. Berlin J, Røyne F, Ekendahl S, Albers E. State of the Art of
Algal Biomass As Raw Material for Biofuel Production. Report
No 2013:14, f3 The Swedish Knowledge Centre for Renewable
Transportation Fuels, Sweden; 2013: 41 p.

8. Dasan YK, Lam MK, Yusup S, Lim JW, Lee KT. Life cycle eval-
uation of microalgae biofuels production: effect of cultivation
system on energy, carbon emission and cost balance analysis.
Sci Total Environ. 2019;688:112-128. https://doi.org/10.1016/j.
scitotenv.2019.06.181.

9. Suparmaniam U, Lam MK, Uemura Y, Lim JW, Lee KT,
Shuit SH. Insights into the microalgae cultivation technology
and harvesting process for biofuel production: a review. Renew
Sustain Energy Rev. 2019;115:109361. https://doi.org/10.1016/j.
rser.2019.109361.

10. Biller P, Ross AB. Potential yields and properties of oil from
the hydrothermal liquefaction of microalgae with different bio-
chemical content. Bioresour Technol. 2011;102(1):215-225.
https://doi.org/10.1016/j.biortech.2010.06.028.

11. Valdez PJ, Tocco VJ, Savage PE. A general kinetic model for
the hydrothermal liquefaction of microalgae. Bioresour
Technol. 2014;163:123-127. https://doi.org/10.1016/j.biortech.
2014.04.013.

12. Roberts GW, Fortier M-O, Sturm BSM, Stagg-Williams S. Com-
parison of biocrude from micro- and macroalgae. 12th AIChE
Annual Meeting. Pittsburg, PA: American Institute of Chemical
Engineers (AIChE); 2012.

13. Zhang Y, Kendall A, Yuan J. A comparison of on-site nutrient
and energy recycling technologies in algal oil production. Res-
our Conserv Recycl. 2014;88:13-20. https://doi.org/10.1016/j.
resconrec.2014.04.011.

14. Adams JMM, Ross AB, Anastasakis K, et al. Seasonal variation
in the chemical composition of the bioenergy feedstock Lami-
naria digitata for thermochemical conversion. Bioresour
Technol. 2011;102(1):226-234. https://doi.org/10.1016/j.biortech.
2010.06.152.

15. Adams JMM, Toop TA, Donnison IS, Gallagher JA. Seasonal
variation in Laminaria digitata and its impact on biochemical
conversion routes to biofuels. Bioresour Technol. 2011;102(21):
9976-9984. https://doi.org/10.1016/j.biortech.2011.08.032.

16. Raikova S, Olsson J, Mayers JJ, Nylund GM, Albers E,
Chuck CJ. Effect of geographical location on the variation in
products formed from the hydrothermal liquefaction of Ulva
intestinalis. Energy Fuel. 2020;34(1):368-378. https://doi.org/10.
1021/acs.energyfuels.8b02374.

17. Tu Q, Lu M, Thiansathit W, Keener TC. Review of water con-
sumption and water conservation technologies in the algal bio-
fuel process. Water Environ Res. 2016;88(1):21-28. https://doi.
org/10.2175/106143015x14362865227517.

18. Venteris ER, Skaggs RL, Wigmosta MS, Coleman AM. A
national-scale comparison of resource and nutrient demands
for algae-based biofuel production by lipid extraction and
hydrothermal liquefaction. Biomass Bioenergy. 2014;64:276-290.
https://doi.org/10.1016/j.biombioe.2014.02.001.

19. Lardon L, Hélias A, Sialve B, Steyer J-P, Bernard O. Life-cycle
assessment of biodiesel production from microalgae. Environ
Sci Technol. 2009;43(17):6475-6481. https://doi.org/10.1021/
es900705j.

20. Alvarado-Morales M, Boldrin A, Karakashev DB, Holdt SL,
Angelidaki I, Astrup T. Life cycle assessment of biofuel production

16 ANDERSSON ET AL.

https://orcid.org/0000-0002-1674-3955
https://orcid.org/0000-0002-1674-3955
https://orcid.org/0000-0001-9729-1622
https://orcid.org/0000-0001-9729-1622
https://doi.org/10.1007/s10098-013-0591-9
https://doi.org/10.1016/j.energy.2013.07.024
https://doi.org/10.1016/j.energy.2013.07.024
https://doi.org/10.1016/j.energy.2011.12.011
https://doi.org/10.1016/j.energy.2011.12.011
https://doi.org/10.1016/j.biombioe.2014.10.019
https://doi.org/10.1016/j.biombioe.2014.10.019
https://doi.org/10.1007/s12155-008-9008-8
https://doi.org/10.1007/s12155-008-9008-8
https://doi.org/10.1016/j.rser.2014.07.030
https://doi.org/10.1016/j.scitotenv.2019.06.181
https://doi.org/10.1016/j.scitotenv.2019.06.181
https://doi.org/10.1016/j.rser.2019.109361
https://doi.org/10.1016/j.rser.2019.109361
https://doi.org/10.1016/j.biortech.2010.06.028
https://doi.org/10.1016/j.biortech.2014.04.013
https://doi.org/10.1016/j.biortech.2014.04.013
https://doi.org/10.1016/j.resconrec.2014.04.011
https://doi.org/10.1016/j.resconrec.2014.04.011
https://doi.org/10.1016/j.biortech.2010.06.152
https://doi.org/10.1016/j.biortech.2010.06.152
https://doi.org/10.1016/j.biortech.2011.08.032
https://doi.org/10.1021/acs.energyfuels.8b02374
https://doi.org/10.1021/acs.energyfuels.8b02374
https://doi.org/10.2175/106143015x14362865227517
https://doi.org/10.2175/106143015x14362865227517
https://doi.org/10.1016/j.biombioe.2014.02.001
https://doi.org/10.1021/es900705j
https://doi.org/10.1021/es900705j


from brown seaweed in Nordic conditions. Bioresour Technol. 2013;
129:92-99. https://doi.org/10.1016/j.biortech.2012.11.029.

21. Ubando AT, Rivera DRT, Chen W-H, Culaba AB. A compre-
hensive review of life cycle assessment (LCA) of microalgal and
lignocellulosic bioenergy products from thermochemical pro-
cesses. Bioresour Technol. 2019;291:121837. https://doi.org/10.
1016/j.biortech.2019.121837.

22. Naaz F, Bhattacharya A, Pant KK, Malik A. Investigations on
energy efficiency of biomethane/biocrude production from
pilot scale wastewater grown algal biomass. Appl Energy. 2019;
254:113656. https://doi.org/10.1016/j.apenergy.2019.113656.

23. Frank ED, Elgowainy A, Han J, Wang Z. Life cycle comparison
of hydrothermal liquefaction and lipid extraction pathways to
renewable diesel from algae. Mitig Adapt Strat Glob Chang.
2013;18(1):137-158. https://doi.org/10.1007/s11027-012-9395-1.

24. Moncada J, Vural Gursel I, Huijgen WJJ, Dijkstra JW,
Ramírez A. Techno-economic and ex-ante environmental assess-
ment of C6 sugars production from spruce and corn. Comparison
of organosolv and wet milling technologies. J Clean Prod. 2018;
170:610-624. https://doi.org/10.1016/j.jclepro.2017.09.195.

25. Moncada Botero J. Ex-Ante Assessment of Novel Technologies
for Bio-Based Chemicals Production. Utrecht, The Netherlands:
Utrecht University; 2018:314p.

26. Jiang Y, Jones SB, Zhu Y, et al. Techno-economic uncertainty
quantification of algal-derived biocrude via hydrothermal liq-
uefaction. Algal Res. 2019;39:101450. https://doi.org/10.1016/j.
algal.2019.101450.

27. Verhein M. Personal communication. 2015.
28. Clarens AF, Resurreccion EP, White MA, Colosi LM. Environ-

mental life cycle comparison of algae to other bioenergy feed-
stocks. Environ Sci Technol. 2010;44(9):3643-3643. https://doi.
org/10.1021/es1007438.

29. Savage N. Algae: the scum solution. Nature. 2011;474(7352):
S15-S16. https://doi.org/10.1038/474S015a.

30. Langlois J, Sassi J-FF, Jard G, Steyer J-PP, Delgenes J-PP,
Hélias A. Life cycle assessment of biomethane from offshore-
cultivated seaweed. Biofuels Bioprod Biorefin. 2012;6(4):387-404.
https://doi.org/10.1002/bbb.1330.

31. Rabalais N, Turner RE, Díaz RJ, Justic D. Global change and
eutrophication of coastal waters. ICES J Mar Sci. 2009;66(7):
1528-1537. https://doi.org/10.1093/icesjms/fsp047.

32. Anastasakis K, Ross ABB. Hydrothermal liquefaction of four
brown macro-algae commonly found on the UK coasts: an
energetic analysis of the process and comparison with bio-
chemical conversion methods. Fuel. 2015;139:546-553. https://
doi.org/10.1016/j.fuel.2014.09.006.

33. Pokoo-Aikins G, Nadim A, El-Halwagi MM, Mahalec V. Design
and analysis of biodiesel production from algae grown through
carbon sequestration. Clean Technol Environ Policy. 2010;12(3):
239-254. https://doi.org/10.1007/s10098-009-0215-6.

34. Davis R, Kinchin C, Markham J, et al. Process Design and Eco-
nomics for the Conversion of Algal Biomass to Biofuels: Algal
Biomass Fractionation to Lipid- and Carbohydrate-Derived
Fuel Products. NREL/TP-5100-62368; 2014. https://doi.org/10.
2172/1159351.

35. Jones S, Zhu Y, Anderson D, et al. Process Design and Econom-
ics for the Conversion of Algal Biomass to Hydrocarbons: Whole
Algae Hydrothermal Liquefaction and Upgrading. PNNL-23227,
BM0108010; 2014. https://doi.org/10.2172/1126336.

36. Anastasakis K, Ross AB. Hydrothermal liquefaction of the brown
macro-alga Laminaria saccharina: effect of reaction conditions on
product distribution and composition. Bioresour Technol. 2011;
102(7):4876-4883. https://doi.org/10.1016/j.biortech.2011.01.031.

37. Edwards R, Hass H, Larivé JF, et al. Well-to-wheels analysis of
future automotive fuels and powertrains in the European context.
Version 4.1. Luxembourg; 2014: 96 p. https://doi.org/10.2790/95533.

38. Dehkhoda AM, West AH, Ellis N. Biochar based solid acid cat-
alyst for biodiesel production. Appl Catal Gen. 2010;382(2):197-
204. https://doi.org/10.1016/j.apcata.2010.04.051.

39. International Biochar Initiative. Soil Health—Biochar-Interna-
tional. https://biochar-international.org/soil-health/. Published
2019. Accessed April 24, 2019.

40. IEA. World Energy Outlook 2018. Paris Cedex: IEA; 2018:
643 p. doi: https://doi.org/10.1787/20725302.

41. Harvey S, Axelsson E. Scenarios for Assessing Profitability and
Carbon Balances of Energy Investments in Industry. Göteborg,
Sweden: AGS, The Alliance for Global Sustainability;
2010: 42 p.

42. Gundersen T. A Process Integration Primer. SINTEF Energy
Research, Trondheim, Norway; 2002: 90 p.

43. Smith R. State of the art in process integration. Appl Therm
Eng. 2000;20(15):1337-1345. https://doi.org/10.1016/S1359-4311
(00)00010-7.

44. Klemes J, Friedler F, Bulatov I, Varbanov P. Sustainability in
the Process Industry—Integration and Optimization. New York:
McGraw-Hill; 2011: 384 p.

45. Andersson V, Franck PÅ, Berntsson T. Industrial excess heat
driven post-combustion CCS: the effect of stripper temperature
level. Int J Greenh Gas Control. 2014;21:1-10. https://doi.org/10.
1016/j.ijggc.2013.11.016.

46. Andersson V, Vadenbo A. Hydrogen Pinch Analysis of Preemraff
Göteborg and Preemraff Lysekil. Chalmers University of Technology.
Gothenburg, Sweden; 2010: 56 p. http://publications.lib.chalmers.se/
records/fulltext/123626.pdf. Accessed April 20, 2019.

47. Turner JA. Sustainable hydrogen production. Science. 2004;305
(5686):972-974. https://doi.org/10.1126/science.1103197.

48. Doucha J, Straka F, Lívanský K. Utilization of flue gas for
cultivation of microalgae (Chlorella sp.) in an outdoor open
thin-layer photobioreactor. J Appl Phycol. 2005;17(5):403-412.
https://doi.org/10.1007/s10811-005-8701-7.

49. Van Harmelen T, Oonk H. Microalgae Biofixation Processes:
Applications and Potential Contributions to Greenhouse Gas
Mitigation Options. TNO, Apeldoorn, The Netherlands; Order
Nr 36562; 2006: 45 p.

50. Ros M, Read A, Uilenreef J, Limbeek J. Start of a CO2 hub in
Rotterdam: connecting CCS and CCU. Energy Procedia. 2014;
63:2691-2701. https://doi.org/10.1016/j.egypro.2014.11.291.

51. Neveux N, Yuen AKL, Jazrawi C, et al. Pre- and post-harvest
treatment of macroalgae to improve the quality of feedstock for
hydrothermal liquefaction. Algal Res. 2014;6(A:22-31. https://
doi.org/10.1016/j.algal.2014.08.008.

52. Aitken D, Bulboa C, Godoy-Faundez A, Turrion-Gomez JL,
Antizar-Ladislao B. Life cycle assessment of macroalgae culti-
vation and processing for biofuel production. J Clean Prod.
2014;75:45-56. https://doi.org/10.1016/j.jclepro.2014.03.080.

53. Khoo HH, Sharratt PN, Das P, Balasubramanian RK,
Naraharisetti PK, Shaik S. Life cycle energy and CO2 analysis
of microalgae-to-biodiesel: preliminary results and

ANDERSSON ET AL. 17

https://doi.org/10.1016/j.biortech.2012.11.029
https://doi.org/10.1016/j.biortech.2019.121837
https://doi.org/10.1016/j.biortech.2019.121837
https://doi.org/10.1016/j.apenergy.2019.113656
https://doi.org/10.1007/s11027-012-9395-1
https://doi.org/10.1016/j.jclepro.2017.09.195
https://doi.org/10.1016/j.algal.2019.101450
https://doi.org/10.1016/j.algal.2019.101450
https://doi.org/10.1021/es1007438
https://doi.org/10.1021/es1007438
https://doi.org/10.1038/474S015a
https://doi.org/10.1002/bbb.1330
https://doi.org/10.1093/icesjms/fsp047
https://doi.org/10.1016/j.fuel.2014.09.006
https://doi.org/10.1016/j.fuel.2014.09.006
https://doi.org/10.1007/s10098-009-0215-6
https://doi.org/10.2172/1159351
https://doi.org/10.2172/1159351
https://doi.org/10.2172/1126336
https://doi.org/10.1016/j.biortech.2011.01.031
https://doi.org/10.2790/95533
https://doi.org/10.1016/j.apcata.2010.04.051
https://biochar%2010international.org/soil%2010health/
https://doi.org/10.1787/20725302
https://doi.org/10.1016/S1359-4311(00)00010-7
https://doi.org/10.1016/S1359-4311(00)00010-7
https://doi.org/10.1016/j.ijggc.2013.11.016
https://doi.org/10.1016/j.ijggc.2013.11.016
http://publications.lib.chalmers.se/records/fulltext/123626.pdf
http://publications.lib.chalmers.se/records/fulltext/123626.pdf
https://doi.org/10.1126/science.1103197
https://doi.org/10.1007/s10811-005-8701-7
https://doi.org/10.1016/j.egypro.2014.11.291
https://doi.org/10.1016/j.algal.2014.08.008
https://doi.org/10.1016/j.algal.2014.08.008
https://doi.org/10.1016/j.jclepro.2014.03.080


comparisons. Bioresour Technol. 2011;102(10):5800-5807.
https://doi.org/10.1016/j.biortech.2011.02.055.

54. Xu L, Wim Brilman DWF, Withag JAM, Brem G, Kersten S.
Assessment of a dry and a wet route for the production of
biofuels from microalgae: energy balance analysis. Bioresour
Technol. 2011;102(8):5113-5122. https://doi.org/10.1016/j.
biortech.2011.01.066.

55. Pleanjai S, Gheewala SH. Full chain energy analysis of biodie-
sel production from palm oil in Thailand. Appl Energy. 2009;86
(SUPPL. 1):S209-S214. https://doi.org/10.1016/j.apenergy.2009.
05.013.

56. Collet P, Hélias A, Lardon L, Ras M, Goy R-A, Steyer J-P. Life-
cycle assessment of microalgae culture coupled to biogas pro-
duction. Bioresour Technol. 2011;102:207-214. https://doi.org/
10.1016/j.biortech.2010.06.154.

57. Götz M, Köppel W, Reimert R, Graf F. Optimierungspotenzial
von Wäschen zur Biogasaufbereitung. Teil 1—Physikalische
Wäschen. Chemie-Ingenieur-Technik. 2011;83(6):858-866. https://
doi.org/10.1002/cite.201000211.

58. Sukarni S, Soeparman S, Hamidi N, Yanuhar U, Wardana ING.
Potential and properties of marine microalgae Nannochloropsis
oculata as biomass fuel feedstock. Int J Energy Environ Eng.
2014;5(4):279-290. https://doi.org/10.1007/s40095-014-0138-9.

59. Ehimen EA, Connaughton S, Sun Z, Carrington GC. Energy
recovery from lipid extracted, transesterified and glycerol
codigested microalgae biomass. GCB Bioenergy. 2009;1(6):371-
381. https://doi.org/10.1111/j.1757-1707.2009.01029.x.

60. Oligae. Oilgae Guide to Fuels from Macroalgae. Chennai,
India; 2010: 74 p.

How to cite this article: Andersson V, Heyne S,
Harvey S, Berntsson T. Integration of algae-based
biofuel production with an oil refinery: Energy and
carbon footprint assessment. Int J Energy Res. 2020;
1–18. https://doi.org/10.1002/er.5760

18 ANDERSSON ET AL.

https://doi.org/10.1016/j.biortech.2011.02.055
https://doi.org/10.1016/j.biortech.2011.01.066
https://doi.org/10.1016/j.biortech.2011.01.066
https://doi.org/10.1016/j.apenergy.2009.05.013
https://doi.org/10.1016/j.apenergy.2009.05.013
https://doi.org/10.1016/j.biortech.2010.06.154
https://doi.org/10.1016/j.biortech.2010.06.154
https://doi.org/10.1002/cite.201000211
https://doi.org/10.1002/cite.201000211
https://doi.org/10.1007/s40095-014-0138-9
https://doi.org/10.1111/j.1757-1707.2009.01029.x
https://doi.org/10.1002/er.5760

	Integration of algae-based biofuel production with an oil refinery: Energy and carbon footprint assessment
	1  INTRODUCTION
	2  STATE OF THE ART
	3  OBJECTIVES
	4  STUDIED SYSTEMS
	5  METHODOLOGY
	5.1  System boundaries
	5.2  Modelling parameters and performance indicators
	5.2.1  Lipid extraction (LE) biofuel route (R1)
	5.2.2  Hydrothermal liquefaction (HTL) biofuel route (R2 and R3)
	5.2.3  Performance indicators

	5.3  Process integration

	6  RESULTS
	6.1  Energy balance and carbon footprint
	6.2  Sensitivity analysis

	7  DISCUSSION
	8  CONCLUSIONS
	ACKNOWLEDGEMENTS
	Endnotes
	REFERENCES


