922 research outputs found

    Magnetically hindered chain formation in transition-metal break junctions

    Get PDF
    Based on first-principles calculations, we demonstrate that magnetism impedes the formation of long chains in break junctions. We find a distinct softening of the binding energy of atomic chains due to the creation of magnetic moments that crucially reduces the probability of successful chain formation. Thereby, we are able to explain the long standing puzzle why most of the transition-metals do not assemble as long chains in break junctions and provide thus an indirect evidence that in general suspended atomic chains in transition-metal break junctions are magnetic.Comment: 5 pages, 3 figure

    Strength of the Effective Coulomb Interaction at Metal and Insulator Surfaces

    Get PDF
    The effective on-site Coulomb interaction (Hubbard UU) between localized electrons at crystal surfaces is expected to be enhanced due to the reduced coordination number and reduced subsequent screening. By means of first principles calculations employing the constrained random-phase approximation (cRPA) we show that this is indeed the case for simple metals and insulators but not necessarily for transition metals and insulators that exhibit pronounced surface states. In the latter case, the screening contribution from surface states as well as the influence of the band narrowing increases the electron polarization to such an extent as to overcompensate the decrease resulting from the reduced effective screening volume. The Hubbard UU parameter is thus substantially reduced in some cases, e.g., by around 30% for the (100) surface of bcc Cr.Comment: 4.4 pages, 3 figures, 1 tabl

    Improvement of accuracy of wave-function-matching method for transport calculation

    Full text link
    The wave-function-matching (WFM) technique for first-principles transport-property calculations was modified by S\o{}rensen {\it et al.} so as to exclude rapidly decreasing evanescent waves [S\o{}rensen {\it et al.}, Phys. Rev. B {\bf 77}, 155301 (2008)]. However, this method lacks translational invariance of the transmission probability with respect to insertion of matching planes and consistency between the sum of the transmission and reflection probabilities and the number of channels in the transition region. We reformulate the WFM method since the original methods are formulated to include all the generalized Bloch waves. It is found that the translational invariance is destroyed by the overlap of the layers between the electrode and transition regions and by the pseudoinverses used to exclude the rapidly decreasing evanescent waves. We then devise a method that removes the overlap and calculates the transmission probability without the pseudoinverses. As a result, we find that the translational invariance of the transmission probability with respect to insertion of the extra layers is properly retained and the sum of the transmission and reflection probabilities exactly agrees with the number of channels. In addition, we prove that the accuracy in the transmission probability of this WFM technique is comparable with that obtained by the nonequilibrium Green's function method. Furthermore, we carry out the electron transport calculations on two-dimensional graphene sheets embedded with B--N line defects sandwiched between a pair of semi-infinite graphene electrodes and find the dependence of the electron transmission on the transverse momentum perpendicular to the direction of transport

    The relation of the Dzyaloshinskii-Moriya interaction to spin currents and to the spin-orbit field

    Full text link
    Starting from the general Berry phase theory of the Dzyaloshinskii-Moriya interaction (DMI) we derive an expression for the linear contribution of the spin-orbit interaction (SOI). Thereby, we show analytically that at the first order in SOI DMI is given by the ground-state spin current. We verify this finding numerically by ab-initio calculations in Mn/W(001) and Co/Pt(111) magnetic bilayers. We show that despite the strong SOI from the 5dd heavy metals DMI is well-approximated by the first order in SOI, while the ground-state spin current is not. We decompose the SOI-linear contribution to DMI into two parts. One part has a simple interpretation in terms of the Zeeman interaction between the spin-orbit field and the spin misalignment that electrons acquire in magnetically noncollinear textures. This interpretation provides also an intuitive understanding of the symmetry of DMI on the basis of the spin-orbit field and it explains in a simple way why DMI and ground-state spin currents are related. Moreover, we show that energy currents driven by magnetization dynamics and associated to DMI can be explained by counter-propagating spin currents that carry energy due to their Zeeman interaction with the spin-orbit field. Finally, we discuss options to modify DMI by nonequilibrium spin currents excited by electric fields or light

    Electronic phase transitions of bismuth under strain from relativistic self-consistent GW calculations

    Get PDF
    We present quasiparticle self-consistent GW (QSGW) calculations of semimetallic bulk Bi. We go beyond the conventional QSGW method by including the spin-orbit coupling throughout the self-consistency cycle. This approach improves the description of the electron and the hole pockets considerably with respect to standard density functional theory (DFT), leading to excellent agreement with experiment. We employ this relativistic QSGW approach to conduct a study of the semimetal-to-semiconductor and the trivial-to-topological transitions that Bi experiences under strain. DFT predicts that an unphysically large strain is needed for such transitions. We show, by means of the relativistic QSGW description of the electronic structure, that an in-plane tensile strain of only 0.3% and a compressive strain of 0.4% are sufficient to cause the semimetal-to-semiconductor and the trivial-to-topological phase transitions, respectively. Thus, the required strain moves into a regime that is likely to be realizable in experiment, which opens up the possibility to explore bulklike topological behavior of pure Bi

    First-principles prediction of high Curie temperature for ferromagnetic bcc-Co and bcc-FeCo alloys and its relevance to tunneling magnetoresistance

    Full text link
    We determine from first-principles the Curie temperature Tc for bulk Co in the hcp, fcc, bcc, and tetragonalized bct phases, for FeCo alloys, and for bcc and bct Fe. For bcc-Co, Tc=1420 K is predicted. This would be the highest Curie temperature among the Co phases, suggesting that bcc-Co/MgO/bcc-Co tunnel junctions offer high magnetoresistance ratios even at room temperature. The Curie temperatures are calculated by mapping ab initio results to a Heisenberg model, which is solved by a Monte Carlo method

    Chiral damping, chiral gyromagnetism and current-induced torques in textured one-dimensional Rashba ferromagnets

    Full text link
    We investigate Gilbert damping, spectroscopic gyromagnetic ratio and current-induced torques in the one-dimensional Rashba model with an additional noncollinear magnetic exchange field. We find that the Gilbert damping differs between left-handed and right-handed N\'eel-type magnetic domain walls due to the combination of spatial inversion asymmetry and spin-orbit interaction (SOI), consistent with recent experimental observations of chiral damping. Additionally, we find that also the spectroscopic gg factor differs between left-handed and right-handed N\'eel-type domain walls, which we call chiral gyromagnetism. We also investigate the gyromagnetic ratio in the Rashba model with collinear magnetization, where we find that scattering corrections to the gg factor vanish for zero SOI, become important for finite spin-orbit coupling, and tend to stabilize the gyromagnetic ratio close to its nonrelativistic value

    Spin-orbit torques and tunable Dzyaloshinskii-Moriya interaction in Co/Cu/Co trilayers

    Full text link
    We study the spin-orbit torques (SOTs) in Co/Cu/Co magnetic trilayers based on first-principles density-functional theory calculations in the case where the applied electric field lies in-plane, i.e., parallel to the interfaces. We assume that the bottom Co layer has a fixed in-plane magnetization, while the top Co layer can be switched. We find that the SOT on the top ferromagnet can be controlled by the bottom ferromagnet because of the nonlocal character of the SOT in this system. As a consequence the SOT is anisotropic, i.e., its magnitude varies with the direction of the applied electric field. We show that the Dzyaloshinskii-Moriya interaction (DMI) in the top layer is anisotropic as well, i.e., the spin-spiral wavelength of spin-spirals in the top layer depends on their in-plane propagation direction. This effect suggests that DMI can be tuned easily in magnetic trilayers via the magnetization direction of the bottom layer. In order to understand the influence of the bottom ferromagnet on the SOTs and the DMI of the top ferromagnet we study these effects in Co/Cu magnetic bilayers for comparison. We find the SOTs and the DMI to be surprisingly large despite the small spin-orbit interaction of Cu

    The inverse thermal spin-orbit torque and the relation of the Dzyaloshinskii-Moriya interaction to ground-state energy currents

    Full text link
    Using the Kubo linear-response formalism we derive expressions to calculate the heat current generated by magnetization dynamics in magnets with broken inversion symmetry and spin-orbit interaction (SOI). The effect of producing heat currents by magnetization dynamics constitutes the Onsager reciprocal of the thermal spin-orbit torque (TSOT), i.e., the generation of torques on the magnetization due to temperature gradients. We find that the energy current driven by magnetization dynamics contains a contribution from the Dzyaloshinskii-Moriya interaction (DMI), which needs to be subtracted from the Kubo linear response of the energy current in order to extract the heat current. We show that the expressions of the DMI coefficient can be derived elegantly from the DMI energy current. Guided by formal analogies between the Berry phase theory of DMI on the one hand and the modern theory of orbital magnetization on the other hand we are led to an interpretation of the latter in terms of energy currents as well. Based on \textit{ab-initio} calculations we investigate the heat current driven by magnetization dynamics in Mn/W(001) magnetic bilayers. We predict that fast domain walls drive strong ITSOT heat currents
    corecore