13 research outputs found

    Early Post-ischemic Brain Glucose Metabolism Is Dependent on Function of TLR2: a Study Using [18F]F-FDG PET-CT in a Mouse Model of Cardiac Arrest and Cardiopulmonary Resuscitation

    No full text
    Purpose!#!The mammalian brain glucose metabolism is tightly and sensitively regulated. An ischemic brain injury caused by cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) affects cerebral function and presumably also glucose metabolism. The majority of patients who survive CA suffer from cognitive deficits and physical disabilities. Toll-like receptor 2 (TLR2) plays a crucial role in inflammatory response in ischemia and reperfusion (I/R). Since deficiency of TLR2 was associated with increased survival after CA-CPR, in this study, glucose metabolism was measured using non-invasive [!##!Procedures!#!Two PET-CT scans using 2-deoxy-2-[!##!Results!#!The absolute SUV!##!Conclusions!#!The altered mouse strains presented a different pattern in glucose uptake under normal and ischemic conditions, whereby the post-ischemic differences in glucose metabolism were associated with the function of key immune factor TLR2. There is evidence for using early FDG-PET-CT as an additional diagnostic tool after resuscitation. Further studies are needed to use PET-CT in predicting neurological outcomes

    Toll-like receptor 4 deficiency or inhibition does not modulate survival and neurofunctional outcome in a murine model of cardiac arrest and resuscitation.

    No full text
    BackgroundPatients experiencing cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) often die or suffer from severe neurological impairment. Post resuscitation syndrome is characterized by a systemic inflammatory response. Toll-like receptor 4 (TLR4) is a major mediator of inflammation and TLR4 has been implicated in the pathogenesis of post-resuscitation encephalopathy. The aim of this study was to evaluate whether TLR4 deficiency or inhibition can modulate survival and neurofunctional outcome after CA/CPR.MethodsFollowing intubation and central venous cannulation, CA was induced in wild type (C57Bl/6J, n = 38), TLR4 deficient (TLR4-/-, n = 37) and TLR4 antibody treated mice (5mg/kg MTS510, n = 15) by high potassium. After 10min, CPR was performed using a modified sewing machine until return of spontaneous circulation (ROSC). Cytokines and cerebral TNFalpha levels were measured 8h after CA/CPR. Survival, early neurological recovery, locomotion, spatial learning and memory were assessed over a period of 28 days.ResultsFollowing CA/CPR, all mice exhibited ROSC and 31.5% of wild type mice survived until day 28. Compared to wild type mice, neither TLR4-/- nor MTS510 treated wild type mice had statistically significant altered survival following CA/CPR (51.3 and 26.7%, P = 0.104 and P = 0.423 vs. WT, respectively). Antibody-treated but not TLR4-/- mice had higher IL-1β and IL-6 levels and TLR4-/- mice had higher IL-10 and cerebral TNFalpha levels. No differences existed between mice of all groups in early neurological recovery, locomotion, spatial learning ability or remembrance.ConclusionTherapeutic strategies targeting TLR4 may not be suitable for the reduction of mortality or neurofunctional impairment after CA/CPR

    Pravastatin But Not Simvastatin Improves Survival and Neurofunctional Outcome After Cardiac Arrest and Cardiopulmonary Resuscitation

    No full text
    Summary: Cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR) is associated with high mortality and poor neurological outcome. We compared the effects of pravastatin and simvastatin on survival and neurofunction in a murine model of CA/CPR. Pravastatin, a hydrophilic statin, increased survival and neurofunction during a 28-day follow-up period. This therapy was associated with improved pulmonary function, reduced pulmonary edema, and increased endothelial cell function in vitro. In contrast, lipophilic simvastatin did not modulate survival but increased pulmonary edema and impaired endothelial cell function. Although pravastatin may display a therapeutic option for post-CA syndrome, the application of simvastatin may require re-evaluation. Key Words: cardiac arrest, endothelial cell function, ischemia and reperfusion injury, pravastatin, resuscitation, simvastati

    Impact of Toll-Like Receptor 2 Deficiency on Survival and Neurological Function after Cardiac Arrest: A Murine Model of Cardiopulmonary Resuscitation

    Get PDF
    <div><p>Background</p><p>Cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR) is associated with poor survival rate and neurofunctional outcome. Toll-like receptor 2 (TLR2) plays an important role in conditions of sterile inflammation such as reperfusion injury. Recent data demonstrated beneficial effects of the administration of TLR2-blocking antibodies in ischemia/reperfusion injury. In this study we investigated the role of TLR2 for survival and neurofunctional outcome after CA/CPR in mice.</p> <p>Methods</p><p>Female TLR2-deficient (TLR2<sup>-/-</sup>) and wild type (WT) mice were subjected to CA for eight min induced by intravenous injection of potassium chloride and CPR by external chest compression. Upon the beginning of CPR, n = 15 WT mice received 5 µg/g T2.5 TLR2 inhibiting antibody intravenously while n = 30 TLR2<sup>-/-</sup> and n = 31 WT controls were subjected to injection of normal saline. Survival and neurological outcome were evaluated during a 28-day follow up period. Basic neurological function, balance, coordination and overall motor function as well as spatial learning and memory were investigated, respectively. In a separate set of experiments, six mice per group were analysed for cytokine and corticosterone serum levels eight hours after CA/CPR.</p> <p>Results</p><p>TLR2 deficiency and treatment with a TLR2 blocking antibody were associated with increased survival (77% and 80% vs. 51% of WT control; both <i>P < 0.05</i>). Neurofunctional performance was less compromised in TLR2<sup>-/-</sup> and antibody treated mice. Compared to WT and antibody treated mice, TLR2<sup>-/-</sup> mice exhibited reduced IL-6 (both <i>P < 0.05</i>) but not IL-1β levels and increased corticosterone plasma concentrations (both <i>P < 0.05</i>).</p> <p>Conclusion</p><p>Deficiency or functional blockade of TLR2 is associated with increased survival and improved neurofunctional outcome in a mouse model of CA/CPR. Thus, TLR2 inhibition could provide a novel therapeutic approach for reducing mortality and morbidity after cardiac arrest and cardiopulmonary resuscitation.</p> </div

    Survival after successful resuscitation in an observation period of 28 days.

    No full text
    <p>Survival of mice following eight min of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) within the 28-day observation period. Black line (1): wildtype (WT) controls (n = 31), gray line (2): TLR2-deficient (TLR2<sup>-/-</sup>, n = 30), dotted line (3): antibody (T2.5)-treated WT mice (n = 15). Data was analysed by Kaplan-Meier log-rank survival analysis and pairwise multiple comparison procedures (Holm-Sidak method). *<i>P < 0.05</i> WT vs. TLR2<sup>-/-</sup>; #<i>P < 0.05</i> WT vs. WT+T2.5.</p

    Graphical analysis of representative results from NeuroScore.

    No full text
    <p>Representative results from evaluation of mice on day 1 (A) and day 3 (B) after CA/CPR employing the NeuroScore. Data are presented as median and interquartile range and was analysed employing ANOVA/Bonferroni. *<i>P < 0.05</i> WT vs. TLR2<sup>-/-</sup>; #<i>P < 0.05</i> WT vs. WT+T2.5.</p

    In Reply

    No full text
    We appreciate the interest of Lagier et al. in our article.1 The authors highlighted in their letter the work of Montaigne et al.,2 who have recently published on the circadian rhythm in relation to ischemia reperfusion injury in a single-center retrospective propensity-matched cohort study addressing this subject on 596 (matched-pairs) patients undergoing aor-tic valve replacement with or without coronary artery bypass grafting, together with a single-center randomized study in 88 patients undergoing isolated aortic valve replacement, in which the perioperative myocardial injury has been assessed with the geometric mean of perioperative cardiac troponin T release

    Effect of xenon anesthesia compared to sevoflurane and total intravenous anesthesia for coronary artery bypass graft surgery on postoperative cardiac troponin release. an international, multicenter, phase 3, single-blinded, randomized noninferiority trial

    No full text
    Abstract BACKGROUND: Ischemic myocardial damage accompanying coronary artery bypass graft surgery remains a clinical challenge. We investigated whether xenon anesthesia could limit myocardial damage in coronary artery bypass graft surgery patients, as has been reported for animal ischemia models. METHODS: In 17 university hospitals in France, Germany, Italy, and The Netherlands, low-risk elective, on-pump coronary artery bypass graft surgery patients were randomized to receive xenon, sevoflurane, or propofol-based total intravenous anesthesia for anesthesia maintenance. The primary outcome was the cardiac troponin I concentration in the blood 24 h postsurgery. The noninferiority margin for the mean difference in cardiac troponin I release between the xenon and sevoflurane groups was less than 0.15 ng/ml. Secondary outcomes were the safety and feasibility of xenon anesthesia. RESULTS: The first patient included at each center received xenon anesthesia for practical reasons. For all other patients, anesthesia maintenance was randomized (intention-to-treat: n = 492; per-protocol/without major protocol deviation: n = 446). Median 24-h postoperative cardiac troponin I concentrations (ng/ml [interquartile range]) were 1.14 [0.76 to 2.10] with xenon, 1.30 [0.78 to 2.67] with sevoflurane, and 1.48 [0.94 to 2.78] with total intravenous anesthesia [per-protocol]). The mean difference in cardiac troponin I release between xenon and sevoflurane was -0.09 ng/ml (95% CI, -0.30 to 0.11; per-protocol: P = 0.02). Postoperative cardiac troponin I release was significantly less with xenon than with total intravenous anesthesia (intention-to-treat: P = 0.05; per-protocol: P = 0.02). Perioperative variables and postoperative outcomes were comparable across all groups, with no safety concerns. CONCLUSIONS: In postoperative cardiac troponin I release, xenon was noninferior to sevoflurane in low-risk, on-pump coronary artery bypass graft surgery patients. Only with xenon was cardiac troponin I release less than with total intravenous anesthesia. Xenon anesthesia appeared safe and feasible
    corecore