11 research outputs found

    The phase diagram of neutral quark matter: Self-consistent treatment of quark masses

    Full text link
    We study the phase diagram of dense, locally neutral three-flavor quark matter within the framework of the Nambu--Jona-Lasinio model. In the analysis, dynamically generated quark masses are taken into account self-consistently. The phase diagram in the plane of temperature and quark chemical potential is presented. The results for two qualitatively different regimes, intermediate and strong diquark coupling strength, are presented. It is shown that the role of gapless phases diminishes with increasing diquark coupling strength.Comment: 10 pages, 7 figures. Two new figures added as in the published versio

    The outer crust of non-accreting cold neutron stars

    Get PDF
    The properties of the outer crust of non-accreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables updating in particular the classic work of Baym, Pethick and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 is used and a thorough comparison of many modern theoretical nuclear models, relativistic and non-relativistic ones, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared in order to check their differences concerning the neutron dripline, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the dripline in the outer crust of non-accreting cold neutron stars.Comment: 20 pages, 10 figures, accepted for publication in Phys. Rev.

    Phase diagram of dense neutral three-flavor quark matter

    Full text link
    We study the phase diagram of dense, locally neutral three-flavor quark matter as a function of the strange quark mass, the quark chemical potential, and the temperature, employing a general nine-parameter ansatz for the gap matrix. At zero temperature and small values of the strange quark mass, the ground state of matter corresponds to the color-flavor-locked (CFL) phase. At some critical value of the strange quark mass, this is replaced by the recently proposed gapless CFL (gCFL) phase. We also find several other phases, for instance, a metallic CFL (mCFL) phase, a so-called uSC phase where all colors of up quarks are paired, as well as the standard two-flavor color-superconducting (2SC) phase and the gapless 2SC (g2SC) phase.Comment: 14 pages, 11 figures, references added; the version accepted for publication in Nucl. Phys.

    Gapless phases of color-superconducting matter

    Full text link
    We discuss gapless color superconductivity for neutral quark matter in beta equilibrium at zero as well as at nonzero temperature. Basic properties of gapless superconductors are reviewed. The current progress and the remaining problems in the understanding of the phase diagram of strange quark matter are discussed.Comment: 8 pages, 2 figures. Plenary talk at Strangeness in Quark Matter 2004 (SQM2004), Cape Town, South Africa, 15-20 September 2004. Minor correction

    Effect of color superconductivity on the mass and radius of a quark star

    Full text link
    We compare quark stars made of color-superconducting quark matter to normal-conducting quark stars. We focus on the most simple color-superconducting system, a two-flavor color superconductor, and employ the Nambu-Jona-Lasinio (NJL) model to compute the gap parameter and the equation of state. By varying the strength of the four-fermion coupling of the NJL model, we study the mass and the radius of the quark star as a function of the value of the gap parameter. If the coupling constant exceeds a critical value, the gap parameter does not vanish even at zero density. For coupling constants below this critical value, mass and radius of a color-superconducting quark star change at most by ca. 20% compared to a star consisting of normal-conducting quark matter. For coupling constants above the critical value mass and radius may change by factors of two or more.Comment: 16 pages, 9 figure
    corecore