151 research outputs found
Twisted topological structures related to M-branes II: Twisted Wu and Wu^c structures
Studying the topological aspects of M-branes in M-theory leads to various
structures related to Wu classes. First we interpret Wu classes themselves as
twisted classes and then define twisted notions of Wu structures. These
generalize many known structures, including Pin^- structures, twisted Spin
structures in the sense of Distler-Freed-Moore, Wu-twisted differential
cocycles appearing in the work of Belov-Moore, as well as ones introduced by
the author, such as twisted Membrane and twisted String^c structures. In
addition, we introduce Wu^c structures, which generalize Pin^c structures, as
well as their twisted versions. We show how these structures generalize and
encode the usual structures defined via Stiefel-Whitney classes.Comment: 20 page
Model study of the cross-tropopause transport of biomass burning pollution
We present a modeling study of the troposphere-to-stratosphere transport (TST) of pollution from major biomass burning regions to the tropical upper troposphere and lower stratosphere (UT/LS). TST occurs predominately through 1) slow ascent in the tropical tropopause layer (TTL) to the LS and 2) quasi-horizontal exchange to the lowermost stratosphere (LMS). We show that biomass burning pollution regularly and significantly impacts the composition of the TTL, LS, and LMS. Carbon monoxide (CO) in the LS in our simulation and data from the Aura Microwave Limb Sounder (MLS) shows an annual oscillation in its composition that results from the interaction of an annual oscillation in slow ascent from the TTL to the LS and seasonal variations in sources, including a semi-annual oscillation in CO from biomass burning. The impacts of CO sources that peak when ascent is seasonally low are damped (e.g. Southern Hemisphere biomass burning) and vice-versa for sources that peak when ascent is seasonally high (e.g. extra-tropical fossil fuels). Interannual variation of CO in the UT/LS is caused primarily by year-to-year variations in biomass burning and the locations of deep convection. During our study period, 1994–1998, we find that the highest concentrations of CO in the UT/LS occurred during the strong 1997–1998 El Niño event for two reasons: i. tropical deep convection shifted to the eastern Pacific Ocean, closer to South American and African CO sources, and ii. emissions from Indonesian biomass burning were higher. This extreme event can be seen as an upper bound on the impact of biomass burning pollution on the UT/LS. We estimate that the 1997 Indonesian wildfires increased CO in the entire TTL and tropical LS (>60 mb) by more than 40% and 10%, respectively, for several months. Zonal mean ozone increased and the hydroxyl radical decreased by as much as 20%, increasing the lifetimes and, subsequently TST, of trace gases. Our results indicate that the impact of biomass burning pollution on the UT/LS is likely greatest during an El Niño event due to favorable dynamics and historically higher burning rates
Torsion cycles as non-local magnetic sources in non-orientable spaces
Non-orientable spaces can appear to carry net magnetic charge, even in the
absence of magnetic sources. It is shown that this effect can be understood as
a physical manifestation of the existence of torsion cycles of codimension one
in the homology of space.Comment: 17 pages, 4 figure
Gauge theory of Faddeev-Skyrme functionals
We study geometric variational problems for a class of nonlinear sigma-models
in quantum field theory. Mathematically, one needs to minimize an energy
functional on homotopy classes of maps from closed 3-manifolds into compact
homogeneous spaces G/H. The minimizers are known as Hopfions and exhibit
localized knot-like structure. Our main results include proving existence of
Hopfions as finite energy Sobolev maps in each (generalized) homotopy class
when the target space is a symmetric space. For more general spaces we obtain a
weaker result on existence of minimizers in each 2-homotopy class.
Our approach is based on representing maps into G/H by equivalence classes of
flat connections. The equivalence is given by gauge symmetry on pullbacks of
G-->G/H bundles. We work out a gauge calculus for connections under this
symmetry, and use it to eliminate non-compactness from the minimization problem
by fixing the gauge.Comment: 34 pages, no figure
Volume Fractions of the Kinematic "Near-Critical" Sets of the Quantum Ensemble Control Landscape
An estimate is derived for the volume fraction of a subset in the neighborhood
of the critical set
of the kinematic quantum ensemble control landscape J(U) = Tr(U\rho U' O),
where represents the unitary time evolution operator, {\rho} is the initial
density matrix of the ensemble, and O is an observable operator. This estimate
is based on the Hilbert-Schmidt geometry for the unitary group and a
first-order approximation of . An upper bound on these
near-critical volumes is conjectured and supported by numerical simulation,
leading to an asymptotic analysis as the dimension of the quantum system
rises in which the volume fractions of these "near-critical" sets decrease to
zero as increases. This result helps explain the apparent lack of influence
exerted by the many saddles of over the gradient flow.Comment: 27 pages, 1 figur
Baryons in Holographic QCD
We study the baryon in holographic QCD with multi- brane
system. In holographic QCD, the baryon appears as a topologically non-trivial
chiral soliton in a four-dimensional effective theory of mesons. We call this
topological soliton as Brane-induced Skyrmion. Some review of
holographic QCD is presented from the viewpoints of recent hadron physics and
phenomenologies. Four-dimensional effective theory with pions and mesons
is uniquely derived from the non-abelian Dirac-Born-Infeld (DBI) action of
brane with supergravity background, without small amplitude expansion of
meson fields to discuss chiral solitons. For the hedgehog configuration of pion
and -meson fields, we derive the energy functional and the Euler-Lagrange
equation of Brane-induced Skyrmion from the meson effective action induced by
holographic QCD. Performing the numerical calculation, we obtain the pion
profile and the -meson profile of the Brane-induced
Skyrmion, and estimate its total energy, energy density distribution, and
root-mean-square radius. These results are compared with the experimental
quantities of baryons and also with the profiles of standard Skyrmion without
mesons. We analyze interaction terms of pions and mesons in
Brane-induced Skyrmion, and consider the role of -meson component
appearing in baryons.Comment: 28 pages, 11 figure
Completeness of Wilson loop functionals on the moduli space of and -connections
The structure of the moduli spaces \M := \A/\G of (all, not just flat)
and connections on a n-manifold is analysed. For any
topology on the corresponding spaces \A of all connections which satisfies
the weak requirement of compatibility with the affine structure of \A, the
moduli space \M is shown to be non-Hausdorff. It is then shown that the
Wilson loop functionals --i.e., the traces of holonomies of connections around
closed loops-- are complete in the sense that they suffice to separate all
separable points of \M. The methods are general enough to allow the
underlying n-manifold to be topologically non-trivial and for connections to be
defined on non-trivial bundles. The results have implications for canonical
quantum general relativity in 4 and 3 dimensions.Comment: Plain TeX, 7 pages, SU-GP-93/4-
Localized Exotic Smoothness
Gompf's end-sum techniques are used to establish the existence of an infinity
of non-diffeomorphic manifolds, all having the same trivial
topology, but for which the exotic differentiable structure is confined to a
region which is spatially limited. Thus, the smoothness is standard outside of
a region which is topologically (but not smoothly) ,
where is the compact three ball. The exterior of this region is
diffeomorphic to standard . In a
space-time diagram, the confined exoticness sweeps out a world tube which, it
is conjectured, might act as a source for certain non-standard solutions to the
Einstein equations. It is shown that smooth Lorentz signature metrics can be
globally continued from ones given on appropriately defined regions, including
the exterior (standard) region. Similar constructs are provided for the
topology, of the Kruskal form of the Schwarzschild
solution. This leads to conjectures on the existence of Einstein metrics which
are externally identical to standard black hole ones, but none of which can be
globally diffeomorphic to such standard objects. Certain aspects of the Cauchy
problem are also discussed in terms of \models which are
``half-standard'', say for all but for which cannot be globally
smooth.Comment: 8 pages plus 6 figures, available on request, IASSNS-HEP-94/2
Explicit expressions for the topological defects of spinor Bose-Einstein condensates
In this paper we first derive a general method which enables one to create
expressions for vortices and monopoles. By using this method we construct
several order-parameters describing the vortices and monopoles of Bose-Einstein
condensates with hyperfine spin F=1 and F=2. We concentrate on defects which
are topologically stable in the absence of an external magnetic field. In
particular we show that in a ferromagnetic condensate there can be a vortex
which does not produce any superfluid flow. We also point out that the
order-parameter space of the cyclic phase of F=2 condensate consists of two
disconnected sets. Finally we examine the effect of an external magnetic field
on the vortices of a ferromagnetic F=1 condensate and discuss the experimental
preparation of a vortex in this system.Comment: 17 pages, partly rewritten to improve clarity, conclusions unchange
Some Remarks on Group Bundles and C*-dynamical systems
We introduce the notion of fibred action of a group bundle on a C(X)-algebra.
By using such a notion, a characterization in terms of induced C*-bundles is
given for C*-dynamical systems such that the relative commutant of the
fixed-point algebra is minimal (i.e., it is generated by the centre of the
given C*-algebra and the centre of the fixed-point algebra). A class of
examples in the setting of the Cuntz algebra is given, and connections with
superselection structures with nontrivial centre are discussed.Comment: 22 pages; to appear on Comm. Math. Phy
- âŠ