1,985 research outputs found

    Organic selenium supplementation increased selenium concentrations in ewe and newborn lamb blood and in slaughter lamb meat compared to inorganic selenium supplementation

    Get PDF
    Background Selenium is part of the antioxidant defence system in animals and humans. The available selenium concentration in soil is low in many regions of the world. The purpose of this study was to evaluate the effect of organic versus inorganic selenium supplementation on selenium status of ewes, their lambs, and slaughter lambs. Methods Ewes on four organic farms were allocated five or six to 18 pens. The ewes were given either 20 mg/kg inorganic selenium as sodium selenite or organic selenium as selenized nonviable yeast supplementation for the two last months of pregnancy. Stipulated selenium concentrations in the rations were below 0.40 mg/kg dry matter. In addition 20 male lambs were given supplements from November until they were slaughtered in March. Silage, hay, concentrates, and individual ewe blood samples were taken before and after the mineral supplementation period, and blood samples were taken from the newborn lambs. Blood samples from ewes and lambs in the same pens were pooled. Muscle samples were taken from slaughter lambs in March. Selenium concentrations were determined by atomic absorption spectrometry with a hydride generator system. In the ANOVA model, selenium concentration was the continuous response variable, and selenium source and farm were the nominal effect variables. Two-sample t-test was used to compare selenium concentrations in muscle samples from the slaughtered lambs that received either organic or inorganic selenium supplements. Results In all ewe pens the whole blood selenium concentrations increased during the experimental period. In addition, ewe pens that received organic selenium had significantly higher whole blood selenium concentrations (mean 0.28 μg/g) than ewe pens that received inorganic selenium (mean 0.24 μg/g). Most prominent, however, was the difference in their lambs; whole blood mean selenium concentration in lambs from mothers that received organic selenium (mean 0.27 μg/g) was 30% higher than in lambs from mothers that received inorganic selenium (mean 0.21 μg/g). Slaughter lambs that received organic selenium had 50% higher meat selenium concentrations (mean 0.12 mg/kg wet weight) than lambs that received inorganic selenium (mean 0.08 mg/kg wet weight). Conclusion Organic selenium supplementation gave higher selenium concentration in ewe and newborn lamb blood and slaughter lamb meat than inorganic selenium supplementation

    Comparative proteomics using 2-D gel electrophoresis and mass spectrometry as tools to dissect stimulons and regulons in bacteria with sequenced or partially sequenced genomes

    Get PDF
    We propose two-dimensional gel electrophoresis (2-DE) and mass spectrometry to define the protein components of regulons and stimulons in bacteria, including those organisms where genome sequencing is still in progress. The basic 2-DE protocol allows high resolution and reproducibility and enables the direct comparison of hundreds or even thousands of proteins simultaneously. To identify proteins that comprise stimulons and regulons, peptide mass fingerprint (PMF) with matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF-MS) analysis is the first option and, if results from this tool are insufficient, complementary data obtained with electrospray ionization tandem-MS (ESI-MS/MS) may permit successful protein identification. ESI-MS/MS and MALDI-TOF-MS provide complementary data sets, and so a more comprehensive coverage of a proteome can be obtained using both techniques with the same sample, especially when few sequenced proteins of a particular organism exist or genome sequencing is still in progress

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore