5,697 research outputs found

    Additional application of the NASCAP code. Volume 1: NASCAP extension

    Get PDF
    The NASCAP computer program comprehensively analyzes problems of spacecraft charging. Using a fully three dimensional approach, it can accurately predict spacecraft potentials under a variety of conditions. Several changes were made to NASCAP, and a new code, NASCAP/LEO, was developed. In addition, detailed studies of several spacecraft-environmental interactions and of the SCATHA spacecraft were performed. The NASCAP/LEO program handles situations of relatively short Debye length encountered by large space structures or by any satellite in low earth orbit (LEO)

    Additional application of the NASCAP code. Volume 2: SEPS, ion thruster neutralization and electrostatic antenna model

    Get PDF
    The interactions of spacecraft systems with the surrounding plasma environment were studied analytically for three cases of current interest: calculating the impact of spacecraft generated plasmas on the main power system of a baseline solar electric propulsion stage (SEPS), modeling the physics of the neutralization of an ion thruster beam by a plasma bridge, and examining the physical and electrical effects of orbital ambient plasmas on the operation of an electrostatically controlled membrane mirror. In order to perform these studies, the NASA charging analyzer program (NASCAP) was used as well as several other computer models and analytical estimates. The main result of the SEPS study was to show how charge exchange ion expansion can create a conducting channel between the thrusters and the solar arrays. A fluid-like model was able to predict plasma potentials and temperatures measured near the main beam of an ion thruster and in the vicinity of a hollow cathode neutralizer. Power losses due to plasma currents were shown to be substantial for several proposed electrostatic antenna designs

    Selective Analysis of Redox Processes at the Electrode Interface with Time-Resolved Raman Spectroscopy

    Get PDF
    Electrochemistry and electrochemical reactions are increasingly important in the transition to a sustainable chemical industry. The electron transfer that drives such reactions takes place within nanometers of the electrode surface, and follow-up chemical reactions take place within the diffusion layer. Hence, understanding electrochemical reactions requires time-, potential-, and spatially resolved analysis. The confocal nature of Raman spectroscopy provides high spatial resolution, in addition to detailed information on molecular structure. The intrinsic weakness of nonresonant Raman scattering, however, is not sensitive enough for relatively minor changes to the solution resulting from reactions at the electrode interface. Indeed, the limit of detection is typically well above the concentrations used in electrochemical studies. Here, we show that surface-enhanced Raman scattering (SERS) and resonance Raman (rR) spectroscopy allow for spatially and time-resolved analysis of solution composition at (&lt;1-2 nm) and near (within 5 μm) the electrode surface, respectively, in a selective manner for species present at low (&lt;1 mM) concentrations. We show changes in concentration of species at the electrode surface, without the need for labels, specific adsorption, or resonance enhancement, using a SERS-active gold electrode prepared readily by electrochemical surface roughening. A combination of smooth and roughened gold electrodes is used to distinguish between surface and resonance enhancement using the well-known redox couples ferrocene and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). We discuss the impact of specific adsorption on the spectral analysis with the ruthenium(II) polypyridyl complex, [Ru(bpy)3]2+. The dual function of the electrode (surface enhancement and electron transfer) in the analysis of solution processes is demonstrated with the reversible oxidation of TMA (4,N,N-trimethylaniline), where transient soluble species are identified in real time, with rapid spectral acquisition, making use of localized enhancement. We anticipate that this approach will find use in elucidating electro(catalytic) reactions at electrode interfaces.</p

    Probing neutrino decays with the cosmic microwave background

    Get PDF
    We investigate in detail the possibility of constraining neutrino decays with data from the cosmic microwave background radiation (CMBR). Two generic decays are considered \nu_H -> \nu_L \phi and \nu_H -> \nu_L \nu_L_bar \nu_L. We have solved the momentum dependent Boltzmann equation in order to account for possible relativistic decays. Doing this we estimate that any neutrino with mass m > 1 eV decaying before the present should be detectable with future CMBR data. Combining this result with other results on stable neutrinos, any neutrino mass of the order 1 eV should be detectable.Comment: 8 pages, 4 figures, to appear in Phys. Rev.

    Single wavelength colour tuning of spiropyran and dithienylethene based photochromic coatings

    Get PDF
    Controlling the transmission of thin films with external stimuli is an important goal in functional optical materials and devices. Tuning is especially challenging where both broad band (neutral density filtering) and spectrally varied (colour) transmission are required. The external control provided by photochemically driven switching, between transmission levels and colours, is functionally simple from a device perspective. The limits due to the spectral ranges of individual photochromic compounds can be overcome by combining several photochromes within one material or device. Here we show that a combination of photochromic molecular switches immobilised in a PMMA polymer matrix enables tuning of colour and transparency. We show that only a single excitation wavelength is required through the use of the primary inner filter effect and the layered construction of the films in which the photochromes nitrospiropyran (NSP), and nitrothiospiropyran (TSP) or 1,2-bis-terthienyl-hexafluorocyclopentene (DTE) are separated spatially. The approach taken circumvents the need to match photochemical quantum yields and thermal reactivity of the component photochromes. The photochemical switching of the films was characterised by UV/vis absorption spectroscopy and shows that switching rates and photostationary states are limited by inner filter effects rather than the intrinsic properties of photochromes, such as photochemical quantum yields and thermal stability. The photochemical behaviour and stability of the photochromes in solution and in the PMMA films were compared and the concentration range over which self-inhibition of photochemical switching occurs was established. The rate of photochemical switching and the difference in transmission between the spiropyran and merocyanine forms in solution enable prediction of the performance in the films and enable rational design of colour tuning ranges and responsivity in thin film filters

    New constraints on neutrino physics from Boomerang data

    Get PDF
    We have performed a likelihood analysis of the recent data on the Cosmic Microwave Background Radiation (CMBR) anisotropy taken by the Boomerang experiment. We find that this data places a strong upper bound on the radiation density present at recombination. Expressed in terms of the equivalent number of neutrino species the 2σ2\sigma bound is N_nu < 13, and the standard model prediction, N_nu = 3.04, is completely consistent the the data. This bound is complementary to the one found from Big Bang nucleosynthesis considerations in that it applies to any type of radiation, i.e. it is not flavour sensitive. It also applies to the universe at a much later epoch, and as such places severe limits on scenarios with decaying neutrinos. The bound also yields a firm upper limit on the lepton asymmetry in the universe.Comment: 4 pages, 2 postscript figures, matches version to appear in PR

    Possible Constraints on the Time Variation of the Fine Structure Constant from Cosmic Microwave Background Data

    Get PDF
    The formation of the cosmic microwave background radiation (CMBR) provides a very powerful probe of the early universe at the epoch of recombination. Specifically, it is possible to constrain the variation of fundamental physical constants in the early universe. We have calculated the effect of a varying electromagnetic coupling constant (\alpha) on the CMBR and find that new satellite experiments should provide a tight constraint on the value of \alpha at recombination which is complementary to existing constraints. An estimate of the obtainable precision is |\dot{\alpha}/\alpha| \leq 7 x 10^{-13} y^{-1} in a realistic experiment.Comment: 5 pages, 3 postscript figures, matches version to appear in Phys. Rev.

    Precision measurements of large scale structure with future type Ia supernova surveys

    Full text link
    Type Ia supernovae are currently the best known standard candles at cosmological distances. In addition to providing a powerful probe of dark energy they are an ideal source of information about the peculiar velocity field of the local universe. Even with the very small number of supernovae presently available it has been possible to measure the dipole and quadrupole of the local velocity field out to z~0.025. With future continuous all-sky surveys like the LSST project the luminosity distances of tens of thousands of nearby supernovae will be measured accurately. This will allow for a determination of the local velocity structure of the universe as a function of redshift with unprecedented accuracy, provided the redshifts of the host galaxies are known. Using catalogues of mock surveys we estimate that future low redshift supernova surveys will be able to probe sigma-8 to a precision of roughly 5% at 95% C.L. This is comparable to the precision in future galaxy and weak lensing surveys and with a relatively modest observational effort it will provide a crucial cross-check on future measurements of the matter power spectrum.Comment: 18 pages, 9 figures, submitted to JCA
    corecore