2 research outputs found

    Pleistocene Brawley and Ocotillo Formations: Evidence for Initial Strike-Slip Deformation Along the San Felipe and San Jacinto Fault Zones, Southern California

    Get PDF
    We examine the Pleistocene tectonic reorganization of the Pacific–North American plate boundary in the Salton Trough of southern California with an integrated approach that includes basin analysis, magnetostratigraphy, and geologic mapping of upper Pliocene to Pleistocene sedimentary rocks in the San Felipe Hills. These deposits preserve the earliest sedimentary record of movement on the San Felipe and San Jacinto fault zones that replaced and deactivated the late Cenozoic West Salton detachment fault. Sandstone and mudstone of the Brawley Formation accumulated between ∼1.1 and ∼0.6–0.5 Ma in a delta on the margin of an arid Pleistocene lake, which received sediment from alluvial fans of the Ocotillo Formation to the west-southwest. Our analysis indicates that the Ocotillo and Brawley formations prograded abruptly to the east-northeast across a former mud-dominated perennial lake (Borrego Formation) at ∼1.1 Ma in response to initiation of the dextral-oblique San Felipe fault zone. The ∼25-km-long San Felipe anticline initiated at about the same time and produced an intrabasinal basement-cored high within the San Felipe–Borrego basin that is recorded by progressive unconformities on its north and south limbs. A disconformity at the base of the Brawley Formation in the eastern San Felipe Hills probably records initiation and early blind slip at the southeast tip of the Clark strand of the San Jacinto fault zone. Our data are consistent with abrupt and nearly synchronous inception of the San Jacinto and San Felipe fault zones southwest of the southern San Andreas fault in the early Pleistocene during a pronounced southwestward broadening of the San Andreas fault zone. The current contractional geometry of the San Jacinto fault zone developed after ∼0.5–0.6 Ma during a second, less significant change in structural style

    The Evolution from Late Miocene West Salton Detachment Faulting to Cross-Cutting Pleistocene Oblique Strike-Slip Faults in the SW Salton Trough, Southern California

    Get PDF
    Field studies in the southwest Salton Trough between Yaqui Ridge and Borrego Mountain show that the West Salton detachment fault was active during the Pliocene and may have initiated during the latest Miocene. At Yaqui Ridge dominantly east-directed extension is recorded by slickenlines on the NW-striking detachment fault, and shows that the fault is actually a low-angle dextral oblique strike-slip fault. Crustal inheritance is responsible for the position of the fault at Yaqui Ridge, which reactivates a late Cretaceous reverse -sense mylonite zone at map scale. Late Miocene to Pliocene basin fill deposits at Borrego Mountain display progressive unconformities, contain detritus shed from the footwall and damage zone of the West Salton detachment fault, record the growth of a large hanging wall anticline, and document the initiation and evolution of the West Salton detachment fault. The Borrego Mountain anticline is a major hanging wall growth fold that trends - N60 °W and has at least 420 m of structural relief. The late Quaternary Sunset conglomerate is - 600 m thick, lies in angular unconformity on Pliocene basin fill, is bound on the SW by the dextral oblique Sunset fault, and coarsens upward and SW toward the fault. It is dominated by plutonic lithologies from nearby areas, contains up to 10% recycled sandstone clasts from Pliocene deposits, and was shed from the SW side of the then-active Sunset fault. Based on lithologic, stratigraphic, compositional similarities, we correlate this conglomerate to part of the - 1. I - 0.6 Ma Ocotillo Formation. The West Salton detachment fault was folded and deactivated at Yaqui Ridge by the dextral oblique San Felipe fault zone starting - 1. l - 1.3 Ma. The Sunset fault is in the middle of a complex left stepover between the San Felipe fault to the NW and the Fish Creek Mountains fault to the SE. Structural analyses and mapping show that syntec tonic conglomerate, the West Salton detachment fault, and footwall crystalline rocks all have similar fold geometries and record similar amounts of NE-SW shortening. The dominant SE-trending population of slip vectors on the Sunset fault is not present on the West Salton detachment fault and suggests limited or no activation of the older detachment fault by the younger fault zone
    corecore