6,347 research outputs found

    Dilepton and Photon Emission Rates from a Hadronic Gas

    Get PDF
    We analyze the dilepton and photon emission rates from a hadronic gas using chiral reduction formulas and a virial expansion. The emission rates are reduced to pertinent vacuum correlation functions, most of which can be assessed from experiment. Our results indicate that in the low mass region, the dilepton and photon rates are enhanced compared to most of the calculations using chiral Lagrangians. The enhancement is further increased through a finite pion chemical potential. An estimate of the emission rates is also made using Haag's expansion for the electromagnetic current. The relevance of these results to dilepton and photon emission rates in heavy-ion collisions is discussed.Comment: 7 pages, LaTeX using revTeX, 6 figures imbedded in text. Figures slightly changed, text left unchange

    Optimal Renormalization-Group Improvement of R(s) via the Method of Characteristics

    Get PDF
    We discuss the application of the method of characteristics to the renormalization-group equation for the perturbative QCD series within the electron-positron annihilation cross-section. We demonstrate how one such renormalization-group improvement of this series is equivalent to a closed-form summation of the first four towers of renormalization-group accessible logarithms to all orders of perturbation theory

    Final Report: Buffalo National River Ecosystems

    Get PDF
    The objective of this study was to sample the Buffalo River on a seasonal basis for a year, in order to determine whether any potential water quality problems existed

    A gauge invariant and string independent fermion correlator in the Schwinger model

    Get PDF
    We introduce a gauge invariant and string independent two-point fermion correlator which is analyzed in the context of the Schwinger model (QED_2). We also derive an effective infrared worldline action for this correlator, thus enabling the computation of its infrared behavior. Finally, we briefly discuss possible perspectives for the string independent correlator in the QED_3 effective models for the normal state of HTc superconductors.Comment: 14 pages, LaTe

    Medium effect on photon production in ultrarelativistic nuclear collisions

    Get PDF
    The effect of in-medium vector and axial-vector meson masses on photon production is studied. We assume that the effective mass of a vector meson in hot nuclear matter decreases according to a universal scaling law, while that of an axial-vector meson is given by Weinberg's mass formula. We find that the thermal production rate of photons increases with reduced masses, and is enhanced by an order of magnitude at T=160 MeV with mρ=300m_\rho=300 MeV. Assuming a hydrodynamic evolution, we estimate the effect of the reduced masses on photon production in nucleus-nucleus collisions. The result is compared to experimental data from the WA80/WA98 collaboration.Comment: 21 pages, REVTEX + 9 figures (ps file

    Constraints on Higher-Order Perturbative Corrections in bub\to u Semileptonic Decays from Residual Renormalization-Scale Dependence

    Get PDF
    The constraint of a progressive decrease in residual renormalization scale dependence with increasing loop order is developed as a method for obtaining bounds on unknown higher-order perturbative corrections to renormalization-group invariant quantities. This technique is applied to the inclusive semileptonic process buνˉb\to u \bar\nu_\ell\ell^- (explicitly known to two-loop order) to obtain bounds on the three- and four-loop perturbative coefficients that are not accessible via the renormalization group. Using the principle of minimal sensitivity, an estimate is obtained for the perturbative contributions to Γ(buνˉ)\Gamma(b\to u \bar\nu_\ell\ell^-) that incorporates theoretical uncertainty from as-yet-undetermined higher order QCD corrections.Comment: latex2e using amsmath, 8 pages, 4 embedded eps figures. Revised version contains an additional figure and accompanying revision

    Novel Methods for Determining Effective Interactions for the Nuclear Shell Model

    Full text link
    The Contractor Renormalization (CORE) method is applied in combination with modern effective-theory techniques to the nuclear many-body problem. A one-dimensional--yet ``realistic''--nucleon-nucleon potential is introduced to test these novel ideas. It is found that the magnitude of ``model-space'' (CORE) corrections diminishes considerably when an effective potential that eliminates the hard-momentum components of the potential is first introduced. As a result, accurate predictions for the ground-state energy of the there-body system are made with relatively little computational effort when both techniques are used in a complementary fashion.Comment: 14 pages, 5 figures and 2 tabl

    Isospin Fluctuations in QCD and Relativistic Heavy-Ion Collisions

    Get PDF
    We address the role of fluctuations in strongly interacting matter during the dense stages of a heavy-ion collision through its electromagnetic emission. Fluctuations of isospin charge are considered in a thermal system at rest as well as in a moving hadronic fluid at fixed proper time within a finite bin of pseudo-rapidity. In the former case, we use general thermodynamic relations to establish a connection between fluctuations and the space-like screening limit of the retarded photon self-energy, which directly relates to the emissivities of dileptons and photons. Effects of hadronic interactions are highlighted through two illustrative calculations. In the latter case, we show that a finite time scale τ\tau inherent in the evolution of a heavy-ion collision implies that equilibrium fluctuations involve both space-like and time-like components of the photon self-energy in the system. Our study of non-thermal effects, explored here through a stochastic treatment, shows that an early and large fluctuation in isospin survives only if it is accompanied by a large temperature fluctuation at freeze-out, an unlikely scenario in hadronic phases with large heat capacity. We point out prospects for the future which include: (1) A determination of the Debye mass of the system at the dilute freeze-out stage of a heavy-ion collision, and (2) A delineation of the role of charge fluctuations during the dense stages of the collision through a study of electromagnetic emissivities.Comment: 12 pages ReVTeX incl. 4 ps-fig
    corecore