15 research outputs found

    A National Survey of Hereditary Angioedema and Acquired C1 Inhibitor Deficiency in the United Kingdom

    Get PDF
    Background: Detailed demographic data on people with hereditary angioedema (HAE) and acquired C1 inhibitor deficiency in the United Kingdom are relatively limited. Better demographic data would be beneficial in planning service provision, identifying areas of improvement, and improving care./ Objective: To obtain more accurate data on the demographics of HAE and acquired C1 inhibitor deficiency in the United Kingdom, including treatment modalities and services available to patients./ Methods: A survey was distributed to all centers in the United Kingdom that look after patients with HAE and acquired C1 inhibitor deficiency to collect these data./ Results: The survey identified 1152 patients with HAE-1/2 (58% female and 92% type 1), 22 patients with HAE with normal C1 inhibitor, and 91 patients with acquired C1 inhibitor deficiency. Data were provided by 37 centers across the United Kingdom. This gives a minimum prevalence of 1:59,000 for HAE-1/2 and 1:734,000 for acquired C1 inhibitor deficiency in the United Kingdom. A total of 45% of patients with HAE were on long-term prophylaxis (LTP) with the most used medication being danazol (55% of all patients on LTP). Eighty-two percent of patients with HAE had a home supply of acute treatment with C1 inhibitor or icatibant. A total of 45% of patients had a supply of icatibant and 56% had a supply of C1 inhibitor at home./ Conclusions: Data obtained from the survey provide useful information about the demographics and treatment modalities used in HAE and acquired C1 inhibitor deficiency in the United Kingdom. These data are useful for planning service provision and improving services for these patients

    Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: A large patient cohort study.

    Get PDF
    BACKGROUND: Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently described combined immunodeficiency resulting from gain-of-function mutations in PIK3CD, the gene encoding the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ). OBJECTIVE: We sought to review the clinical, immunologic, histopathologic, and radiologic features of APDS in a large genetically defined international cohort. METHODS: We applied a clinical questionnaire and performed review of medical notes, radiology, histopathology, and laboratory investigations of 53 patients with APDS. RESULTS: Recurrent sinopulmonary infections (98%) and nonneoplastic lymphoproliferation (75%) were common, often from childhood. Other significant complications included herpesvirus infections (49%), autoinflammatory disease (34%), and lymphoma (13%). Unexpectedly, neurodevelopmental delay occurred in 19% of the cohort, suggesting a role for PI3Kδ in the central nervous system; consistent with this, PI3Kδ is broadly expressed in the developing murine central nervous system. Thoracic imaging revealed high rates of mosaic attenuation (90%) and bronchiectasis (60%). Increased IgM levels (78%), IgG deficiency (43%), and CD4 lymphopenia (84%) were significant immunologic features. No immunologic marker reliably predicted clinical severity, which ranged from asymptomatic to death in early childhood. The majority of patients received immunoglobulin replacement and antibiotic prophylaxis, and 5 patients underwent hematopoietic stem cell transplantation. Five patients died from complications of APDS. CONCLUSION: APDS is a combined immunodeficiency with multiple clinical manifestations, many with incomplete penetrance and others with variable expressivity. The severity of complications in some patients supports consideration of hematopoietic stem cell transplantation for severe childhood disease. Clinical trials of selective PI3Kδ inhibitors offer new prospects for APDS treatment.T.C. is supported by National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland. A.C. has a Wellcome Trust Postdoctoral Training Fellowship for Clinicians (103413/Z/13/Z). K.O. is supported by funding from BBSRC, MRC, Wellcome Trust and GSK. R.D. and D.S.K are funded by National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, Cambridge, UK. C.S. and S.E. are supported by the German Federal Ministry of Education and Research (BMBF 01 EO 0803 grant to the Center of Chronic immunodeficiency and BMBF 01GM1111B grant to the PID-NET initiative). S.N.F is supported in part by the Southampton UK National Institute for Health Research (NIHR) Wellcome Trust Clinical Research Facility and NIHR Respiratory Biomedical Research Unit. M.A.A.I. is funded by NHS Innovation London and King’s College Hospital Charitable Trust. A.F., S.L., A.D., F.R-L and S.K. are supported by the European Union’s 7th RTD Framework Programme (ERC advanced grant PID-IMMUNE contract 249816) and a government grant managed by the French Agence Nationale de la Recherche as part of the "Investments for the Future" program (ANR-10-IAHU-01). S.L. is supported by the Agence Nationale de la Recherche (ANR) (ANR-14-CE14-0028-01), the Foundation ARC pour la Recherche sur le Cancer (France), the Rare Diseases Foundation (France) and François Aupetit Association (France). S.L. is a senior scientist and S.K is a researcher at the Centre National de la Recherche Scientifique-CNRS (France). A.D. and S.K. are supported by the “Institut National de la Santé et de la Recherche Médicale". S.K. also supported by the Fondation pour la Recherche Médicale (grant number: ING20130526624), la Ligue Contre le Cancer (Comité de Paris) and the Centre de Référence Déficits Immunitaires Héréditaires (CEREDIH). S.O.B is supported by the Higher Education Funding Council for England. B.V. is supported by the UK Biotechnology and Biological Sciences Research Council [BB/I007806/1], Cancer Research UK [C23338/A15965) and the National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre. B.V. is consultant to Karus Therapeutics (Oxford, UK). S.N. is a Wellcome Trust Senior Research Fellow in Basic Biomedical Science (095198/Z/10/Z). S.N. is also supported by the European Research Council Starting grant 260477, the EU FP7 collaborative grant 261441 (PEVNET project) and the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, UK. A.M.C. is funded by the Medical Research Council, British Lung Foundation, University of Sheffield and Cambridge NIHR-BRC. Research in A.M.C. laboratory has received non-commercial grant support from GSK, Novartis, and MedImmune.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.jaci.2016.06.02

    Using resource modelling to inform decision making and service planning: the case of colorectal cancer screening in Ireland

    Get PDF
    Background - Organised colorectal cancer screening is likely to be cost-effective, but cost-effectiveness results alone may not help policy makers to make decisions about programme feasibility or service providers to plan programme delivery. For these purposes, estimates of the impact on the health services of actually introducing screening in the target population would be helpful. However, these types of analyses are rarely reported. As an illustration of such an approach, we estimated annual health service resource requirements and health outcomes over the first decade of a population-based colorectal cancer screening programme in Ireland. Methods - A Markov state-transition model of colorectal neoplasia natural history was used. Three core screening scenarios were considered: (a) flexible sigmoidoscopy (FSIG) once at age 60, (b) biennial guaiac-based faecal occult blood tests (gFOBT) at 55–74 years, and (c) biennial faecal immunochemical tests (FIT) at 55–74 years. Three alternative FIT roll-out scenarios were also investigated relating to age-restricted screening (55–64 years) and staggered age-based roll-out across the 55–74 age group. Parameter estimates were derived from literature review, existing screening programmes, and expert opinion. Results were expressed in relation to the 2008 population (4.4 million people, of whom 700,800 were aged 55–74). Results - FIT-based screening would deliver the greatest health benefits, averting 164 colorectal cancer cases and 272 deaths in year 10 of the programme. Capacity would be required for 11,095-14,820 diagnostic and surveillance colonoscopies annually, compared to 381–1,053 with FSIG-based, and 967–1,300 with gFOBT-based, screening. With FIT, in year 10, these colonoscopies would result in 62 hospital admissions for abdominal bleeding, 27 bowel perforations and one death. Resource requirements for pathology, diagnostic radiology, radiotherapy and colorectal resection were highest for FIT. Estimates depended on screening uptake. Alternative FIT roll-out scenarios had lower resource requirements. Conclusions - While FIT-based screening would quite quickly generate attractive health outcomes, it has heavy resource requirements. These could impact on the feasibility of a programme based on this screening modality. Staggered age-based roll-out would allow time to increase endoscopy capacity to meet programme requirements. Resource modelling of this type complements conventional cost-effectiveness analyses and can help inform policy making and service planning

    Autosomal dominant STAT6 Gain of function causes severe atopy associated with lymphoma

    Get PDF
    The transcription factor STAT6 (Signal Transducer and Activator of Transcription 6) is a key regulator of Th2 (T-helper 2) mediated allergic inflammation via the IL-4 (interleukin-4) JAK (Janus kinase)/STAT signalling pathway. We identified a novel heterozygous germline mutation STAT6 c.1255G > C, p.D419H leading to overactivity of IL-4 JAK/STAT signalling pathway, in a kindred affected by early-onset atopic dermatitis, food allergy, eosinophilic asthma, anaphylaxis and follicular lymphoma. STAT6 D419H expression and functional activity were compared with wild type STAT6 in transduced HEK293T cells and to healthy control primary skin fibroblasts and peripheral blood mononuclear cells (PBMC). We observed consistently higher STAT6 levels at baseline and higher STAT6 and phosphorylated STAT6 following IL-4 stimulation in D419H cell lines and primary cells compared to wild type controls. The pSTAT6/STAT6 ratios were unchanged between D419H and control cells suggesting that elevated pSTAT6 levels resulted from higher total basal STAT6 expression. The selective JAK1/JAK2 inhibitor ruxolitinib reduced pSTAT6 levels in D419H HEK293T cells and patient PBMC. Nuclear staining demonstrated increased STAT6 in patient fibroblasts at baseline and both STAT6 and pSTAT6 after IL-4 stimulation. We also observed higher transcriptional upregulation of downstream genes (XBP1 and EPAS1) in patient PBMC. Our study confirms STAT6 gain of function (GOF) as a novel monogenetic cause of early onset atopic disease. The clinical association of lymphoma in our kindred, along with previous data linking somatic STAT6 D419H mutations to follicular lymphoma suggest that patients with STAT6 GOF disease may be at higher risk of lymphomagenesis
    corecore