1,136 research outputs found

    Using dummy and pseudo-dummy amplifiers to correct for common mode CCD noise

    Get PDF
    Some modern CCD designs provide a dummy readout amplifier that is designed to be operated with the same clock and bias signals as the true amplifier in order to provide a measurement of clock induced and other common-mode noise signals in the true amplifier readout. In general the dummy output signal is subtracted electronically from the true output signal in a differential input preamplifier before digitization. Here we report on an alternative approach where both signals are digitized and the subtraction done in software. We present the results of testing this method of operation using the ARC SDSU generation III CCD controllers and an e2v CCD231 device and find it works well, allowing a noise figure of ~ 2:2 electrons to be reached in the presence of significantly higher (~ 6 electrons) pickup noise. In addition we test the effectiveness of using unused (but still genuine) readout amplifiers on the detector to provide a pseudo-dummy output, which we also find effective in cancelling common mode noise. This provides the option of implementing noise reduction on CCDs that are not equipped with dummy outputs at the expense of overall readout speed

    RINGO3: a multi-colour fast response polarimeter

    Get PDF
    GRB jets contain rapidly moving electrons which will spiral around magnetic field lines. This causes them to emit polarized synchrotron emission. We have built a series of polarimeters (RINGO and RINGO2) to investigate this by measuring the polarization of optical light from GRBs at a certain single wavelength. The instruments are mounted on the Liverpool Telescope, which is a fully robotic (i.e. unmanned) telescope on La Palma which reacts to triggers from satellites such as the NASA SWIFT mission. This has had great success, with the first ever detections of early time optical polarization being made. In addition, the first measurements of the change in optical polarization from a GRB as the jet expands have recently been obtained. In this paper we describe the design and construction of RINGO3. This will be a multi-colour instrument that can observe simultaneously at three wavelengths. By doing so we will be able to unambiguously identify where in the burst the polarized emission is coming from. This will allow us to distinguish between three possibilities: (1) Magnetic instabilities generated in the shock front, (2) Line of sight effects and (3) Large-scale magnetic fields present throughout the relativistic outflow. The instrument design combines a rapidly rotating polaroid, specially designed polarization insensitive dichroic mirrors and three electron multiplying CCD cameras to provide simultaneous wavelength coverage with a time resolution of 1 second

    RINGO2: an EMCCD-based polarimeter for GRB followup

    Get PDF
    We describe the design and construction of a new novel optical polarimeter (RINGO2) for the Liverpool Telescope. The instrument is designed for rapid (< 3 minute) followup observations of Gamma Ray Bursts in order to measure the early time polarization and time evolution on timescales of ~ 1 - 10000 seconds. By using a fast rotating Polaroid whose rotation is synchronized to control the readout of an electron multiplying CCD eight times per revolution, we can rebin our data in the time domain after acquisition with little noise penalty, thereby allowing us to explore the polarization evolution of these rapidly variable objects for the first time. © (2010) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only

    IO:I, a near-infrared camera for the Liverpool Telescope

    Get PDF
    IO:I is a new instrument that has recently been commissioned for the Liverpool Telescope, extending current imaging capabilities beyond the optical and into the near-infrared. Cost has been minimized by the use of a previously decommissioned instrument's cryostat as the base for a prototype and retrofitting it with Teledyne's 1.7-μm cutoff Hawaii-2RG HgCdTe detector, SIDECAR ASIC controller, and JADE2 interface card. The mechanical, electronic, and cryogenic aspects of the cryostat retrofitting process will be reviewed together with a description of the software/hardware setup. This is followed by a discussion of the results derived from characterization tests, including measurements of read noise, conversion gain, full well depth, and linearity. The paper closes with a brief overview of the autonomous data reduction process and the presentation of results from photometric testing conducted on on-sky, pipeline processed data. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)

    Misincorporation Proteomics Technologies: A Review.

    Full text link
    Proteinopathies are diseases caused by factors that affect proteoform conformation. As such, a prevalent hypothesis is that the misincorporation of noncanonical amino acids into a proteoform results in detrimental structures. However, this hypothesis is missing proteomic evidence, specifically the detection of a noncanonical amino acid in a peptide sequence. This review aims to outline the current state of technology that can be used to investigate mistranslations and misincorporations whilst framing the pursuit as Misincorporation Proteomics (MiP). The current availability of technologies explored herein is mass spectrometry, sample enrichment/preparation, data analysis techniques, and the hyphenation of approaches. While many of these technologies show potential, our review reveals a need for further development and refinement of approaches is still required

    SPRAT: Spectrograph for the Rapid Acquisition of Transients

    Get PDF
    We describe the development of a low cost, low resolution (R ~ 350), high throughput, long slit spectrograph covering visible (4000-8000) wavelengths. The spectrograph has been developed for fully robotic operation with the Liverpool Telescope (La Palma). The primary aim is to provide rapid spectral classification of faint (V ∼ 20) transient objects detected by projects such as Gaia, iPTF (intermediate Palomar Transient Factory), LOFAR, and a variety of high energy satellites. The design employs a volume phase holographic (VPH) transmission grating as the dispersive element combined with a prism pair (grism) in a linear optical path. One of two peak spectral sensitivities are selectable by rotating the grism. The VPH and prism combination and entrance slit are deployable, and when removed from the beam allow the collimator/camera pair to re-image the target field onto the detector. This mode of operation provides automatic acquisition of the target onto the slit prior to spectrographic observation through World Coordinate System fitting. The selection and characterisation of optical components to maximise photon throughput is described together with performance predictions. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Self-Affirmation Improves Problem-Solving under Stress

    Get PDF
    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings. © 2013 Creswell et al

    RINGO: a novel ring polarimeter for rapid GRB followup - art. no. 62695M

    Get PDF
    We describe the design and construction of a novel optical ring-polarimeter (RINGO) for the Liverpool Telescope. The instrument is designed for rapid (< 5 minutes) followup observations of Gamma Ray Bursts in order to measure the early time polarization and its evolution for the first time. Sensitivity calculations and data reduction procedures are described, and the results of on-sky commissioning presented. The instrument is now on the telescope and in routine use during GRB followup. © (2006) COPYRIGHT SPIE--The International Society for Optical Engineering

    LOTUS: a low-cost, ultraviolet spectrograph

    Get PDF
    We describe the design, construction and commissioning of a simple, low-cost long-slit spectrograph for the Liverpool Telescope. The design is optimized for near-UV and visible wavelengths and uses all transmitting optics. It exploits the instrument focal plane field curvature to partially correct axial chromatic aberration. A stepped slit provides narrow (2.5 × 95 arcsec) and wide (5 × 25 arcsec) options that are optimized for spectral resolution and flux calibration, respectively. On sky testing shows a wavelength range of 3200–6300 Å with a peak system throughput (including detector quantum efficiency) of 15 per cent and wavelength dependent spectral resolution of R = 225–430. By repeated observations of the symbiotic emission line star AG Peg, we demonstrate the wavelength stability of the system is <2 Å rms and is limited by the positioning of the object in the slit. The spectrograph is now in routine operation monitoring the activity of comet 67P/Churyumov-Gerasimenko during its current post-perihelion apparition
    corecore