14 research outputs found

    Impact of web-based cognitive behavioral therapy for insomnia on stress, health, mood, cognitive, inflammatory, and neurodegenerative outcomes in rural dementia caregivers: Protocol for the NiteCAPP CARES and NiteCAPP SHARES randomized controlled trial

    Get PDF
    BACKGROUND: Chronic insomnia affects up to 63% of family dementia caregivers. Research suggests that chronic insomnia prompts changes in central stress processing that have downstream negative effects on health and mood, as well as on cognitive, inflammatory, and neurodegenerative functioning. We hypothesize that cognitive behavioral therapy for insomnia (CBT-I) will reverse those downstream effects by improving insomnia and restoring healthy central stress processing. Rural caregivers are particularly vulnerable, but they have limited access to CBT-I; therefore, we developed an accessible digital version using community input (NiteCAPP CARES). OBJECTIVE: This trial will evaluate the acceptability, feasibility, and short-term and long-term effects of NiteCAPP CARES on the sleep and stress mechanisms underlying poor caregiver health and functioning. METHODS: Dyads (n=100) consisting of caregivers with chronic insomnia and their coresiding persons with dementia will be recruited from Columbia and surrounding areas in Missouri, United States. Participant dyads will be randomized to 4 weeks (plus 4 bimonthly booster sessions) of NiteCAPP CARES or a web-based sleep hygiene control (NiteCAPP SHARES). Participants will be assessed at baseline, after treatment, and 6- and 12-month follow-ups. The following assessments will be completed by caregivers: 1 week of actigraphy and daily diaries measuring sleep, Insomnia Severity Index, arousal (heart rate variability), inflammation (blood-derived biomarkers: interleukin-6 and C-reactive protein), neurodegeneration (blood-derived biomarkers: plasma amyloid beta [Aβ40 and Aβ42], total tau, and phosphorylated tau [p-tau181 and p-tau217]), cognition (Joggle battery, NIH Toolbox for Assessment of Neurological and Behavioral Function, and Cognitive Failures Questionnaire), stress and burden, health, and mood (depression and anxiety). Persons with dementia will complete 1 week of actigraphy at each time point. RESULTS: Recruitment procedures started in February 2022. All data are expected to be collected by 2026. Full trial results are planned to be published by 2027. Secondary analyses of baseline data will be subsequently published. CONCLUSIONS: This randomized controlled trial tests NiteCAPP CARES, a web-based CBT-I for rural caregivers. The knowledge obtained will address not only what outcomes improve but also how and why they improve and for how long, which will help us to modify NiteCAPP CARES to optimize treatment potency and support future pragmatic testing and dissemination. TRIAL REGISTRATION: ClinicalTrials.gov NCT04896775; https://clinicaltrials.gov/ct2/show/NCT04896775. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/37874

    Male mate guarding in a socially monogamous mammal, the round-eared sengi: on costs and trade-offs

    Full text link
    Abstract Mate guarding is predicted to be one of the driving forces for the evolution of monogamy, but supporting evidence in free-living mammals is rare. The goals of our study were three-pronged. First, we tested if mate guarding, measured as intrapair distance, occurs as a behavioral tactic in round-eared sengis (Macroscelides proboscideus), a socially monogamous species lacking paternal care and in which females breed asynchronously, producing 2–3 litters during an 8-month long breeding season. Second, we determined if mate guarding involves costs which we identified as changes in male body mass. Third, we investigated whether variation in individual investment in mate guarding depended on the males’ body mass and the number of neighboring males. Field data were collected in a semidesert in South Africa using radio-tracking, trapping, and direct observations during three successive breeding seasons. Mate guarding strongly depended on the females’ reproductive state, and all males started to guard their mates prior to and during estrus, as exemplified by reduced intrapair distance. Mate guarding incurred costs: overall, males lost about 5% of body mass. Male body mass loss and initial body mass were negatively related to the intensity of precopulatory mate guarding. Furthermore, during estrus intrapair distance was inversely correlated with the number of neighboring males. The results show that mate guarding is the predominant male tactic in round-eared sengis. However, since mate guarding imposed costs, males may balance benefits and costs associated with guarding by varying their effort in relation to their physical capabilities and the competitive environment

    A randomised controlled trial of a cognitive behavioural intervention for women who have menopausal symptoms following breast cancer treatment (MENOS 1):trial protocol

    Get PDF
    BACKGROUND: This trial aims to evaluate the effectiveness of a group cognitive behavioural intervention to alleviate menopausal symptoms (hot flushes and night sweats) in women who have had breast cancer treatment. Hot flushes and night sweats are highly prevalent but challenging to treat in this population. Cognitive behaviour therapy has been found to reduce these symptoms in well women and results of an exploratory trial suggest that it might be effective for breast cancer patients. Two hypotheses are tested: Compared to usual care, group cognitive behavioural therapy will: 1. Significantly reduce the problem rating and frequency of hot flushes and nights sweats after six weeks of treatment and at six months post-randomisation. 2. Improve mood and quality of life after six weeks of treatment and at six months post-randomisation. METHODS/DESIGN: Ninety-six women who have completed their main treatment for breast cancer and who have been experiencing problematic hot flushes and night sweats for over two months are recruited into the trial from oncology and breast clinics in South East London. They are randomised to either six weekly group cognitive behavioural therapy (Group CBT) sessions or to usual care. Group CBT includes information and discussion about hot flushes and night sweats in the context of breast cancer, monitoring and modifying precipitants, relaxation and paced respiration, stress management, cognitive therapy for unhelpful thoughts and beliefs, managing sleep and night sweats and maintaining changes. Prior to randomisation women attend a clinical interview, undergo 24-hour sternal skin conductance monitoring, and complete questionnaire measures of hot flushes and night sweats, mood, quality of life, hot flush beliefs and behaviours, optimism and somatic amplification. Post-treatment measures (sternal skin conductance and questionnaires) are collected six to eight weeks later and follow-up measures (questionnaires and a use of medical services measure) at six months post-randomisation. DISCUSSION: MENOS 1 is the first randomised controlled trial of cognitive behavioural therapy for hot flushes and night sweats that measures both self-reported and physiologically indexed symptoms. The results will inform future clinical practice by developing an evidence-based, non-medical treatment, which can be delivered by trained health professionals. TRIAL REGISTRATION: Current Controlled Trials ISRCTN1377193

    Freshwater biodiversity: importance, threats, status and conservation challenges

    No full text
    Freshwater biodiversity is the over-riding conservation priority during the International Decade for Action – ‘Water for Life’ – 2005 to 2015. Fresh water makes up only 0.01% of the World's water and approximately 0.8% of the Earth's surface, yet this tiny fraction of global water supports at least 100000 species out of approximately 1.8 million – almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the ‘Water for Life’ decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as ‘receivers’ of land-use effluents, and the problems posed by endemism and thus non-substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge because it is influenced by the upstream drainage network, the surrounding land, the riparian zone, and – in the case of migrating aquatic fauna – downstream reaches. Such prerequisites are hardly ever met. Immediate action is needed where opportunities exist to set aside intact lake and river ecosystems within large protected areas. For most of the global land surface, trade-offs between conservation of freshwater biodiversity and human use of ecosystem goods and services are necessary. We advocate continuing attempts to check species loss but, in many situations, urge adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods in order to provide a viable long-term basis for freshwater conservation. Recognition of this need will require adoption of a new paradigm for biodiversity protection and freshwater ecosystem management – one that has been appropriately termed ‘reconciliation ecology’
    corecore