28 research outputs found

    The Effect of Video Distraction on High-Intensity Exercise Performance

    Get PDF
    Click the PDF icon to download the abstract

    Harnessing bacterial power in microscale actuation

    Get PDF
    This paper presents a systematic analysis of the motion of microscale structures actuated by flagellated bacteria. We perform the study both experimentally and theoretically. We use a blotting procedure to attach flagellated bacteria to a buoyancy-neutral plate called a microbarge. The motion of the plate depends on the distribution of the cells on the plate and the stimuli from the environment. We construct a stochastic mathematical model for the system, based on the assumption that the behavior of each bacterium is random and independent of that of its neighbors. The main finding of the paper is that the motion of the barge plus bacteria system is a function of a very small set of parameters. This reduced-dimensional model can be easily estimated using experimental data. We show that the simulation results obtained from the model show an excellent match with the experimentally-observed motion of the barge

    Bayesian Inference for Identifying Interaction Rules in Moving Animal Groups

    Get PDF
    The emergence of similar collective patterns from different self-propelled particle models of animal groups points to a restricted set of “universal” classes for these patterns. While universality is interesting, it is often the fine details of animal interactions that are of biological importance. Universality thus presents a challenge to inferring such interactions from macroscopic group dynamics since these can be consistent with many underlying interaction models. We present a Bayesian framework for learning animal interaction rules from fine scale recordings of animal movements in swarms. We apply these techniques to the inverse problem of inferring interaction rules from simulation models, showing that parameters can often be inferred from a small number of observations. Our methodology allows us to quantify our confidence in parameter fitting. For example, we show that attraction and alignment terms can be reliably estimated when animals are milling in a torus shape, while interaction radius cannot be reliably measured in such a situation. We assess the importance of rate of data collection and show how to test different models, such as topological and metric neighbourhood models. Taken together our results both inform the design of experiments on animal interactions and suggest how these data should be best analysed

    Automated biomanipulation of single cells

    No full text
    Transport of individual cells or chemical payloads on a subcellular scale is an enabling tool for the study of cellular communication, cell migration, and other localized phenomena. We present a magnetically actuated robotic system for the fully automated manipulation of cells and microbeads. Our strategy uses autofluorescent robotic transporters and fluorescently labeled microbeads to aid tracking and control in optically obstructed environments. We demonstrate automated delivery of microbeads infused with chemicals to specified positions on neurons
    corecore