805 research outputs found

    Gamma-ray Spectral Evolution of NGC1275 Observed with Fermi-LAT

    Full text link
    We report on a detailed investigation of the high-energy gamma-ray emission from NGC\,1275, a well-known radio galaxy hosted by a giant elliptical located at the center of the nearby Perseus cluster. With the increased photon statistics, the center of the gamma-ray emitting region is now measured to be separated by only 0.46' from the nucleus of NGC1275, well within the 95% confidence error circle with radius ~1.5'. Early Fermi-LAT observations revealed a significant decade-timescale brightening of NGC1275 at GeV photon energies, with a flux about seven times higher than the one implied by the upper limit from previous EGRET observations. With the accumulation of one-year of Fermi-LAT all-sky-survey exposure, we now detect flux and spectral variations of this source on month timescales, as reported in this paper. The average >100 MeV gamma-ray spectrum of NGC1275 shows a possible deviation from a simple power-law shape, indicating a spectral cut-off around an observed photon energy of E = 42.2+-19.6 GeV, with an average flux of F = (2.31+-0.13) X 10^{-7} ph/cm^2/s and a power-law photon index, Gamma = 2.13+-0.02. The largest gamma-ray flaring event was observed in April--May 2009 and was accompanied by significant spectral variability above E > 1-2 GeV. The gamma-ray activity of NGC1275 during this flare can be described by a hysteresis behavior in the flux versus photon index plane. The highest energy photon associated with the gamma-ray source was detected at the very end of the observation, with the observed energy of E = 67.4GeV and an angular separation of about 2.4' from the nucleus. In this paper we present the details of the Fermi-LAT data analysis, and briefly discuss the implications of the observed gamma-ray spectral evolution of NGC1275 in the context of gamma-ray blazar sources in general.Comment: 20 pages, 6 figures, accepted for publication in the Ap

    A Modified Synchrotron Model for Knots in the M87 Jet

    Full text link
    For explaining the broadband spectral shape of knots in the M87 jet from radio through optical to X-ray, we propose a modified synchrotron model that considers the integrated effect of particle injection from different acceleration sources in the thin acceleration region. This results in two break frequencies at two sides of which the spectral index of knots in the M87 jet changes. We discuss the possible implications of these results for the physical properties in the M87 jet. The observed flux of the knots in the M87 jet from radio to X-ray can be satisfactorily explained by the model, and the predicted spectra from ultraviolet to X-ray could be further tested by future observations. The model implies that the knots D, E, F, A, B, and C1 are unlikely to be the candidate for the TeV emission recently detected in M87.Comment: 12 pages, 1 figure, 2 tables, Accepted for publication in ApJ Letter

    The Highest Redshift Relativistic Jets

    Get PDF
    We describe our efforts to understand large-scale (10's-100's kpc) relativistic jet systems through observations of the highest-redshift quasars. Results from a VLA survey search for radio jets in ~30 z>3.4 quasars are described along with new Chandra observations of 4 selected targets.Comment: 5 pages, 2 figures, to appear in Extragalactic Jets: Theory and Observation from Radio to Gamma Ray, Eds. T.A. Rector and D.S. De Youn

    Probing the origin of VHE emission from M 87 with MWL observations in 2010

    Full text link
    The large majority of extragalactic very high energy (VHE; E>100 GeV) sources belongs to the class of active galactic nuclei (AGN), in particular the BL Lac sub-class. AGNs are characterized by an extremely bright and compact emission region, powered by a super-massive black hole (SMBH) and an accretion disk, and relativistic outflows (jets) detected all across the electro-magnetic spectrum. In BL Lac sources the jet axis is oriented close to the line of sight, giving rise to a relativistic boosting of the emission. In radio galaxies, on the other hand, the jet makes a larger angle to the line of sight allowing to resolve the central core and the jet in great details. The giant radio galaxy M 87 with its proximity (1 6Mpc) and its very massive black hole ((3-6) x 10^9 M_solar) provides a unique laboratory to investigate VHE emission in such objects and thereby probe particle acceleration to relativistic energies near SMBH and in jets. M 87 has been established as a VHE emitter since 2005. The VHE emission displays strong variability on time-scales as short as a day. It has been subject of a large joint VHE and multi-wavelength (MWL) monitoring campaign in 2008, where a rise in the 43 GHz VLBA radio emission of the innermost region (core) was found to coincide with a flaring activity at VHE. This had been interpreted as a strong indication that the VHE emission is produced in the direct vicinity of the SMBH black hole. In 2010 again a flare at VHE was detected triggering further MWL observations with the VLBA, Chandra, and other instruments. At the same time M 87 was also observed with the Fermi-LAT telescope at GeV energies and the European VLBI Network (EVN). In this contribution preliminary results from the campaign will be presented.Comment: 5 pages, 2 figures, in the proceedings of the "International Workshop on Beamed and Unbeamed Gamma-Rays from Galaxies" 11-15 April 2011, Lapland Hotel Olos, Muonio, Finland, Journal of Physics: Conference Series Volume 355, 201

    Kiloparsec-Scale Jets in FR I Radio Galaxies and the Gamma-Ray Background

    Full text link
    We discuss the contribution of kiloparsec-scale jets in FR I radio galaxies to the diffuse gamma-ray background radiation. The analyzed gamma-ray emission comes from inverse-Compton scattering of starlight photon fields by the ultrarelativistic electrons whose synchrotron radiation is detected from such sources at radio, optical and X-ray energies. We find that these objects, under the minimum-power hypothesis (corresponding to a magnetic field of 300 muG in the brightest knots of these jets), can contribute about one percent to the extragalactic gamma-ray background measured by EGRET. We point out that this result already indicates that the magnetic fields in kpc-scale jets of low-power radio galaxies are not likely to be smaller than 10 muG on average, as otherwise the extragalactic gamma-ray background would be overproduced.Comment: 18 pages, 3 figures included. ApJ accepte

    A Flare in the Jet of Pictor A

    Get PDF
    A Chandra X-ray imaging observation of the jet in Pictor A showed a feature that appears to be a flare that faded between 2000 and 2002. The feature was not detected in a follow-up observation in 2009. The jet itself is over 150 kpc long and a kpc wide, so finding year-long variability is surprising. Assuming a synchrotron origin of the observed high-energy photons and a minimum energy condition for the outflow, the synchrotron loss time of the X-ray emitting electrons is of order 1200 yr, which is much longer than the observed variability timescale. This leads to the possibility that the variable X-ray emission arises from a very small sub-volume of the jet, characterized by magnetic field that is substantially larger than the average over the jet.Comment: 12 pages, 3 figures, to appear in Ap. J. Letter

    On the Magnetic Field in the Kiloparsec-Scale Jet of Radio Galaxy M 87

    Full text link
    Several low-power kiloparsec-scale jets in nearby radio galaxies are known for their synchrotron radiation extending up to optical and X-ray photon energies. Here we comment on high-energy gamma-ray emission of one particular object of this kind, i.e. the kiloparsec-scale jet of M 87 radio galaxy, resulting from comptonization of the starlight photon field of the host galaxy by the synchrotron-emitting jet electrons. In the analysis, we include relativistic bulk velocity of the jet, as well as the Klein-Nishina effects. We show, that upper limits to the kiloparsec-scale jet inverse-Compton radiation imposed by HESS and HEGRA Cherenkov Telescopes - which detected a variable source of VHE gamma-ray emission within 0.1 deg (~30 kpc) of the M 87 central region - give us an important constraint on the magnetic field strength in this object, namely that the magnetic field cannot be smaller than the equipartition value (referring solely to the radiating electrons) in the brightest knot of the jet, and most likely, is even stronger. In this context, we point out a need for the amplification of the magnetic energy flux along the M 87 jet from the sub-parsec to kiloparsec scales, suggesting the turbulent dynamo as a plausible process responsible for the aforementioned amplification.Comment: 25 pages, 8 figures included. Accepted for publication in The Astrophysical Journa

    The 300 kpc Long X-ray Jet in PKS 1127-145, z=1.18 Quasar: Constraining X-ray Emission Models

    Get PDF
    We present a ~100 ksec Chandra X-ray observation and new VLA radio data of the large scale, 300 kpc long X-ray jet in PKS1127-145, a radio loud quasar at redshift z=1.18. With this deep X-ray observation we now clearly discern the complex X-ray jet morphology and see substructure within the knots. The X-ray and radio jet intensity profiles are seen to be strikingly different with the radio emission peaking strongly at the two outer knots while the X-ray emission is strongest in the inner jet region. The jet X-ray surface brightness gradually decreases by an order of magnitude going out from the core. The new X-ray data contain sufficient counts to do spectral analysis of the key jet features. The X-ray energy index of the inner jet is relatively flat with alpha_X = 0.66 +/-0.15 and steep in the outer jet with alpha_X = 1.0 +/-0.2. We discuss the constraints implied by the new data on the X-ray emission models and conclude that ``one-zone'' models fail and at least a two component model is needed to explain the jet's broad-band emission. We propose that the X-ray emission originates in the jet proper while the bulk of the radio emission comes from a surrounding jet sheath. We also consider intermittent jet activity as a possible cause of the observed jet morphology
    corecore