129 research outputs found

    Multiphase elastic homogenization, and the mechanics of tendon-to-bone attachment

    Get PDF
    Estimates of the effective stiffness of a composite containing multiple types of inclusions are needed for the design and study of functionally graded systems in engineering and biologic materials. One important stiffening mechanism in biologic systems is the accumulation of a high volume fraction of mineral inclusions within and upon collagen fibers. Modeling of this mechanism is critical for understanding how stresses are transmitted from tendon to bone and for designing improvements to surgical procedures for reattaching tendon to bone. The latter is a critical need because failure rates following surgical reattachment are as high as 94% in some populations. Modeling of such material remains difficult Because of a number of physiological and mathematical challenges. A range of methods have been described in the literature for estimating the effective elastic properties of composites containing low volume fractions of different inclusion types. Here, we provide an estimate of the effective elastic responses of composites containing high volume fractions of different, ellipsoidal and anisotropic inclusion types. The homogenization estimate compared well against numerical simulation and available experimental data. The method out-performed all methods of which we are aware for modeling of numerical simulations of the mechanical response of the graded attachment of tendon to bone. The method is a good candidate for the characterization of composites with multiple types of anisotropic inclusions, even if these inclusions have moderate volume fractions and a variety of aspect ratios

    Enhanced zone II flexor tendon repair through a new half hitch loop suture configuration

    Get PDF
    This study evaluated the impact of a new half hitch loop suture configuration on flexor tendon repair mechanics. Cadaver canine flexor digitorum profundus tendons were repaired with 4- or 8-strands, 4-0 or 3-0 suture, with and without half hitch loops. An additional group underwent repair with half hitch loops but without the terminal knot. Half hitch loops improved the strength of 8-strand repairs by 21% when 4-0, and 33% when 3-0 suture was used, and caused a shift in failure mode from suture pullout to suture breakage. 8-strand repairs with half hitch loops but without a terminal knot produced equivalent mechanical properties to those without half hitch loops but with a terminal knot. 4-strand repairs were limited by the strength of the suture in all groups and, as a result, the presence of half hitch loops did not alter the mechanical properties. Overall, half hitch loops improved repair mechanics, allowing failure strength to reach the full capability of suture strength. Improving the mechanical properties of flexor tendon repair with half hitch loops has the potential to reduce the postoperative risk of gap formation and catastrophic rupture in the early postoperative period

    Tenotomy-induced muscle atrophy is sex-specific and independent of NFκB

    Get PDF
    The nuclear factor-κB (NFκB) pathway is a major thoroughfare for skeletal muscle atrophy and is driven by diverse stimuli. Targeted inhibition of NFκB through its canonical mediator IKKβ effectively mitigates loss of muscle mass across many conditions, from denervation to unloading to cancer. In this study, we used gain- and loss-of-function mouse models to examine the role of NFκB in muscle atrophy following rotator cuff tenotomy - a model of chronic rotator cuff tear. IKKβ was knocked down or constitutively activated in muscle-specific inducible transgenic mice to elicit a twofold gain or loss of NFκB signaling. Surprisingly, neither knockdown of IKKβ nor overexpression of caIKKβ significantly altered the loss of muscle mass following tenotomy. This finding was consistent across measures of morphological adaptation (fiber cross-sectional area, fiber length, fiber number), tissue pathology (fibrosis and fatty infiltration), and intracellular signaling (ubiquitin-proteasome, autophagy). Intriguingly, late-stage tenotomy-induced atrophy was exacerbated in male mice compared with female mice. This sex specificity was driven by ongoing decreases in fiber cross-sectional area, which paralleled the accumulation of large autophagic vesicles in male, but not female muscle. These findings suggest that tenotomy-induced atrophy is not dependent on NFκB and instead may be regulated by autophagy in a sex-specific manner

    Nanofiber Scaffolds with Gradations in Mineral Content for Mimicking the Tendon-to-Bone Insertion Site

    Get PDF
    We have demonstrated a simple and versatile method for generating a continuously graded, bonelike calcium phosphate coating on a nonwoven mat of electrospun nanofibers. A linear gradient in calcium phosphate content could be achieved across the surface of the nanofiber mat. The gradient had functional consequences with regard to stiffness and biological activity. Specifically, the gradient in mineral content resulted in a gradient in the stiffness of the scaffold and further influenced the activity of mouse preosteoblast MC3T3 cells. This new class of nanofiberbased scaffolds can potentially be employed for repairing the tendon-to-bone insertion site via a tissue engineering approach

    Primary cilia as the nexus of biophysical and hedgehog signaling at the tendon enthesis

    Get PDF
    The tendon enthesis is a fibrocartilaginous tissue critical for transfer of muscle forces to bone. Enthesis pathologies are common, and surgical repair of tendon to bone is plagued by high failure rates. At the root of these failures is a gap in knowledge of how the tendon enthesis is formed and maintained. We tested the hypothesis that the primary cilium is a hub for transducing biophysical and hedgehog (Hh) signals to regulate tendon enthesis formation and adaptation to loading. Primary cilia were necessary for enthesis development, and cilia assembly was coincident with Hh signaling and enthesis mineralization. Cilia responded inversely to loading; increased loading led to decreased cilia and decreased loading led to increased cilia. Enthesis responses to loading were dependent on Hh signaling through cilia. Results imply a role for tendon enthesis primary cilia as mechanical responders and Hh signal transducers, providing a therapeutic target for tendon enthesis pathologies

    BMP12 induces tenogenic differentiation of adipose-derived stromal cells

    Get PDF
    <div><p>Adipose-derived stromal cells (ASCs) are pluripotent cells that have the capacity to differentiate into tendon fibroblasts (TFs). They are abundant in adults, easy to access, and are therefore an ideal cell source for tendon tissue engineering. Despite this potential, the molecular cues necessary for tenogenic differentiation of ASCs are unknown. Unlike other bone morphogenetic proteins (BMPs), BMP12, BMP13, and BMP14 have been reported to be less osteo-chondrogenic and to induce tendon rather than bone formation <i>in vivo</i>. This study investigated the effects of BMP12 and BMP14 on ASC differentiation <i>in vitro</i>. In canine ASCs, BMP12 effectively increased the expression of the tendon markers scleraxis and tenomodulin at both mRNA and protein levels. Consistent with these results, BMP12 induced scleraxis promoter driven-GFP and tenomodulin protein expression in mouse ASCs. Although BMP12 also enhanced the expression of the cartilage matrix gene aggrecan in ASCs, the resulting levels remained considerably lower than those detected in tendon fibroblasts. In addition, BMP12 reduced expression of the bone marker osteocalcin, but not the osteogenic transcription factor runx-2. BMP14 exhibited similar, but marginally less potent and selective effects, compared to BMP12. BMPs are known to signal through the canonical Smad pathway and the non-canonical mitogen-activated protein kinase (MAPK) pathway. BMP12 triggered robust phosphorylation of Smad1/5/8 but not Smad2/3 or p38 MAPK in ASCs. The effect was likely conveyed by type I receptors ALK2/3/6, as phosphorylation of Smad1/5/8 was blocked by the ALK2/3/6 inhibitor LDN-193189 but not by the ALK4/5/7 inhibitor SB-505124. Moreover, ALK6 was found to be the most abundant type I receptor in ASCs, with mRNA expression 100 to 10,000 times that of any other type I receptor. Collectively, results support the conclusion that BMP12 induces tenogenic differentiation of ASCs via the Smad1/5/8 pathway.</p> </div

    In vivo evaluation of adipose-derived stromal cells delivered with a nanofiber scaffold for tendon-to-bone repair

    Get PDF
    Rotator cuff tears are common and cause a great deal of lost productivity, pain, and disability. Tears are typically repaired by suturing the tendon back to its bony attachment. Unfortunately, the structural (e.g., aligned collagen) and compositional (e.g., a gradient in mineral) elements that produce a robust attachment in the healthy tissue are not regenerated during healing, and the repair is prone to failure. Two features of the failed healing response are deposition of poorly aligned scar tissue and loss of bone at the repair site. Therefore, the objective of the current study was to improve tendon-to-bone healing by promoting aligned collagen deposition and increased bone formation using a biomimetic scaffold seeded with pluripotent cells. An aligned nanofibrous poly(lactic-co-glycolic acid) scaffold with a gradient in mineral content was seeded with adipose-derived stromal cells (ASCs) and implanted at the repair site of a rat rotator cuff model. In one group, cells were transduced with the osteogenic factor bone morphogenetic protein 2 (BMP2). The healing response was examined in four groups (suture only, acellular scaffold, cellular scaffold, and cellular BMP2 scaffold) using histologic, bone morphology, and biomechanical outcomes at 14, 28, and 56 days. Histologically, the healing interface was dominated by a fibrovascular scar response in all groups. The acellular scaffold group showed a delayed healing response compared to the other groups. When examining bone morphology parameters, bone loss was evident in the cellular BMP2 group compared to other groups at 28 days. When examining repair-site mechanical properties, strength and modulus were decreased in the cellular BMP2 groups compared to other groups at 28 and 56 days. These results indicated that tendon-to-bone healing in this animal model was dominated by scar formation, preventing any positive effects of the implanted biomimetic scaffold. Furthermore, cells transduced with the osteogenic factor BMP2 led to impaired healing, suggesting that this growth factor should not be used in the tendon-to-bone repair setting
    • …
    corecore