88 research outputs found

    LIS1 Regulates Osteoclast Formation and Function through Its Interactions with Dynein/Dynactin and Plekhm1

    Get PDF
    Microtubule organization and lysosomal secretion are both critical for the activation and function of osteoclasts, highly specialized polykaryons that are responsible for bone resorption and skeletal homeostasis. Here, we have identified a novel interaction between microtubule regulator LIS1 and Plekhm1, a lysosome-associated protein implicated in osteoclast secretion. Decreasing LIS1 expression by shRNA dramatically attenuated osteoclast formation and function, as shown by a decreased number of mature osteoclasts differentiated from bone marrow macrophages, diminished resorption pits formation, and reduced level of CTx-I, a bone resorption marker. The ablated osteoclast formation in LIS1-depleted macrophages was associated with a significant decrease in macrophage proliferation, osteoclast survival and differentiation, which were caused by reduced activation of ERK and AKT by M-CSF, prolonged RANKL-induced JNK activation and declined expression of NFAT-c1, a master transcription factor of osteoclast differentiation. Consistent with its critical role in microtubule organization and dynein function in other cell types, we found that LIS1 binds to and colocalizes with dynein in osteoclasts. Loss of LIS1 led to disorganized microtubules and aberrant dynein function. More importantly, the depletion of LIS1 in osteoclasts inhibited the secretion of Cathepsin K, a crucial lysosomal hydrolase for bone degradation, and reduced the motility of osteoclast precursors. These results indicate that LIS1 is a previously unrecognized regulator of osteoclast formation, microtubule organization, and lysosomal secretion by virtue of its ability to modulate dynein function and Plekhm1

    Estrogens Attenuate Oxidative Stress and the Differentiation and Apoptosis of Osteoblasts by DNA-Binding-Independent Actions of the ERα

    Get PDF
    Estrogens diminish oxidative stress in bone and bone marrow, attenuate the generation of osteoblasts, and decrease the prevalence of mature osteoblast apoptosis. We have searched for the molecular mechanism of these effects using as tools a mouse model bearing an estrogen receptor α (ERα) knock-in mutation that prevents binding to DNA (ERαNERKI/−) and several osteoblast progenitor cell models expressing the wild-type ERα or the ERαNERKI/−. We report that the ability of estrogens to diminish the generation of reactive oxygen species, stimulate the activity of glutathione reductase, and decrease the phosphorylation of p66shc, as well as osteoblastogenesis and osteoblast number and apoptosis, were fully preserved in ERαNERKI/− mice, indicating that the DNA-binding function of the ERα is dispensable for all these effects. Consistent with the attenuation of osteoblastogenesis in this animal model, 17β-estradiol attenuated bone morphogenetic protein 2 (BMP-2)–induced gene transcription and osteoblast commitment and differentiation in murine and human osteoblastic cell lines. Moreover, 17β-estradiol attenuated BMP-2-induced differentiation of primary cultures of calvaria- or bone marrow–derived osteoblastic cells from ERαNERKI/− mice as effectively as in cells from wild-type littermates. The inhibitory effect of the hormone on BMP-2 signaling resulted from an ERα-mediated activation of ERKs and the phosphorylation of Smad1 at the linker region of the protein, which leads to proteasomal degradation. These results illustrate that the effects of estrogens on oxidative stress and the birth and death of osteoblasts do not require the binding of ERα to DNA response elements, but instead they result from the activation of cytoplasmic kinases. © 2010 American Society for Bone and Mineral Researc

    Control of Bone Mass and Remodeling by PTH Receptor Signaling in Osteocytes

    Get PDF
    Osteocytes, former osteoblasts buried within bone, are thought to orchestrate skeletal adaptation to mechanical stimuli. However, it remains unknown whether hormones control skeletal homeostasis through actions on osteocytes. Parathyroid hormone (PTH) stimulates bone remodeling and may cause bone loss or bone gain depending on the balance between bone resorption and formation. Herein, we demonstrate that transgenic mice expressing a constitutively active PTH receptor exclusively in osteocytes exhibit increased bone mass and bone remodeling, as well as reduced expression of the osteocyte-derived Wnt antagonist sclerostin, increased Wnt signaling, increased osteoclast and osteoblast number, and decreased osteoblast apoptosis. Deletion of the Wnt co-receptor LDL related receptor 5 (LRP5) attenuates the high bone mass phenotype but not the increase in bone remodeling induced by the transgene. These findings demonstrate that PTH receptor signaling in osteocytes increases bone mass and the rate of bone remodeling through LRP5-dependent and -independent mechanisms, respectively

    Osteocalcin promotes bone mineralization but is not a hormone.

    No full text

    Calcium homeostastis

    No full text

    Steroids and osteoporosis: the quest for mechanisms

    No full text

    Parathyroid Hormone Controls Receptor Activator of NF-κB Ligand Gene Expression via a Distant Transcriptional Enhancer

    No full text
    RANKL, a protein essential for osteoclast development and survival, is stimulated by parathyroid hormone (PTH) via a PTH receptor 1/cyclic AMP (cAMP)/protein kinase A (PKA)/CREB cascade, exclusively in osteoblastic cells. We report that a bacterial artificial chromosome-based transcriptional reporter construct containing 120 kb of RANKL 5′-flanking region was stimulated by dibutyryl-cAMP in stromal/osteoblastic cells, but not other cell types. Full cAMP responsiveness was dependent upon a conserved 715-bp region located 76 kb upstream from the transcription start site, which we identified by sequential deletion analysis and by comparison of human and mouse genomic sequences in silico. This region contained conserved consensus sequences which bound CREB and the osteoblast-specific transcription factor Runx2, and when mutated blunted cAMP responsiveness. Overexpression of Runx2 potentiated cAMP responsiveness of the endogenous RANKL gene in a cell-type-specific manner. Lastly, PTH responsiveness of the endogenous RANKL gene was abrogated in mice from which we deleted this conserved upstream region. Thus, PTH responsiveness of the RANKL gene is determined by a distant regulatory region that responds to cAMP in a cell-type-specific manner and Runx2 may contribute to such cell-type specificity
    • …
    corecore