14 research outputs found

    Analysis of Rattleback Chaotic Oscillations

    Get PDF
    Rattleback is a canoe-shaped object, already known from ancient times, exhibiting a nontrivial rotational behaviour. Although its shape looks symmetric, its kinematic behaviour seems to be asymmetric. When spun in one direction it normally rotates, but when it is spun in the other direction it stops rotating and oscillates until it finally starts rotating in the other direction. It has already been reported that those oscillations demonstrate chaotic characteristics. In this paper, rattleback’s chaotic dynamics are studied by applying Kane’s model for different sets of (experimentally decided) parameters, which correspond to three different experimental prototypes made of wax, gypsum, and lead-solder. The emerging chaotic behaviour in all three cases has been studied and evaluated by the related time-series analysis and the calculation of the strange attractors’ invariant parameters

    Real-World Chaos-Based Cryptography Using Synchronised Chua Chaotic Circuits

    Full text link
    This work presents the hardware demonstrator of a secure encryption system based on synchronised Chua chaotic circuits. In particular, the presented encryption system comprises two Chua circuits that are synchronised using a dedicated bidirectional synchronisation line. One of them forms part of the transmitter, while the other of the receiver. Both circuits are tuned to operate in a chaotic mode. The output (chaotic) signal of the first circuit (transmitter) is digitised and then combined with the message to be encrypted, through an XOR gate. The second Chua circuit (receiver) is used for the decryption; the output chaotic signal of this circuit is similarly digitised and combined with the encrypted message to retrieve the original message. Our hardware demonstrator proves that this method can be used in order to provide extremely lightweight real-world, chaos-based cryptographic solutions.Comment: This work was accepted for and presented as a hardware demo at the 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST 2022), held from 27 to 30 June 2022, in Washington, DC, US

    Stochastic Computing Implementation of Chaotic Systems

    No full text
    An exploding demand for processing capabilities related to the emergence of the Internet of Things (IoT), Artificial Intelligence (AI), and big data, has led to the quest for increasingly efficient ways to expeditiously process the rapidly increasing amount of data. These ways include different approaches like improved devices capable of going further in the more Moore path but also new devices and architectures capable of going beyond Moore and getting more than Moore. Among the solutions being proposed, Stochastic Computing has positioned itself as a very reasonable alternative for low-power, low-area, low-speed, and adjustable precision calculations—four key-points beneficial to edge computing. On the other hand, chaotic circuits and systems appear to be an attractive solution for (low-power, green) secure data transmission in the frame of edge computing and IoT in general. Classical implementations of this class of circuits require intensive and precise calculations. This paper discusses the use of the Stochastic Computing (SC) framework for the implementation of nonlinear systems, showing that it can provide results comparable to those of classical integration, with much simpler hardware, paving the way for relevant applications

    Stochastic Computing Emulation of Memristor Cellular Nonlinear Networks

    No full text
    Cellular Nonlinear Networks (CNN) are a concept introduced in 1988 by Leon Chua and Lin Yang as a bio-inspired architecture capable of massively parallel computation. Since then, CNN have been enhanced by incorporating designs that incorporate memristors to profit from their processing and memory capabilities. In addition, Stochastic Computing (SC) can be used to optimize the quantity of required processing elements; thus it provides a lightweight approximate computing framework, quite accurate and effective, however. In this work, we propose utilization of SC in designing and implementing a memristor-based CNN. As a proof of the proposed concept, an example of application is presented. This application combines Matlab and a FPGA in order to create the CNN. The implemented CNN was then used to perform three different real-time applications on a 512 × 512 gray-scale and a 768 × 512 color image: storage of the image, edge detection, and image sharpening. It has to be pointed out that the same CNN was used for the three different tasks, with the sole change of some programmable parameters. Results show an excellent capability with significant accompanying advantages, such as the low number of needed elements further allowing for a low cost FPGA-based system implementation, something confirming the system’s capacity for real time operation

    A Switched Capacitor Memristor Emulator Using Stochastic Computing

    No full text
    Due to the increased use of memristors and their many applications, the use of emulators has grown in parallel to avoid some of the difficulties presented by real devices, such as variability and reliability. In this paper, we present a memristive emulator designed using a switched capacitor (SC), that is, an analog component/block and a control part or block implemented using stochastic computing (SCo) and therefore fully digital. Our design is thus a mixed signal circuit. Memristor equations are implemented using stochastic computing to generate the control signals necessary to work with the controllable resistor implemented as a switched capacitor

    A Switched Capacitor Memristor Emulator Using Stochastic Computing

    No full text
    Due to the increased use of memristors and their many applications, the use of emulators has grown in parallel to avoid some of the difficulties presented by real devices, such as variability and reliability. In this paper, we present a memristive emulator designed using a switched capacitor (SC), that is, an analog component/block and a control part or block implemented using stochastic computing (SCo) and therefore fully digital. Our design is thus a mixed signal circuit. Memristor equations are implemented using stochastic computing to generate the control signals necessary to work with the controllable resistor implemented as a switched capacitor

    Investigating Dynamical Complexity and Fractal Characteristics of Bitcoin/US Dollar and Euro/US Dollar Exchange Rates around the COVID-19 Outbreak

    No full text
    This article investigates the dynamical complexity and fractal characteristics changes of the Bitcoin/US dollar (BTC/USD) and Euro/US dollar (EUR/USD) returns in the period before and after the outbreak of the COVID-19 pandemic. More specifically, we applied the asymmetric multifractal detrended fluctuation analysis (A-MF-DFA) method to investigate the temporal evolution of the asymmetric multifractal spectrum parameters. In addition, we examined the temporal evolution of Fuzzy entropy, non-extensive Tsallis entropy, Shannon entropy, and Fisher information. Our research was motivated to contribute to the comprehension of the pandemic’s impact and the possible changes it caused in two currencies that play a key role in the modern financial system. Our results revealed that for the overall trend both before and after the outbreak of the pandemic, the BTC/USD returns exhibited persistent behavior while the EUR/USD returns exhibited anti-persistent behavior. Additionally, after the outbreak of COVID-19, there was an increase in the degree of multifractality, a dominance of large fluctuations, as well as a sharp decrease of the complexity (i.e., increase of the order and information content and decrease of randomness) of both BTC/USD and EUR/USD returns. The World Health Organization (WHO) announcement, in which COVID-19 was declared a global pandemic, appears to have had a significant impact on the sudden change in complexity. Our findings can help both investors and risk managers, as well as policymakers, to formulate a comprehensive response to the occurrence of such external events

    A Universal Physics-Based Model Describing COVID-19 Dynamics in Europe

    No full text
    The self-organizing mechanism is a universal approach that is widely followed in nature. In this work, a novel self-organizing model describing diffusion over a lattice is introduced. Simulation results for the model’s active lattice sites demonstrate an evolution curve that is very close to those describing the evolution of infected European populations by COVID-19. The model was further examined against real data regarding the COVID-19 epidemic for seven European countries (with a total population of 290 million) during the periods in which social distancing measures were imposed, namely Italy and Spain, which had an enormous spread of the disease; the successful case of Greece; and four central European countries: France, Belgium, Germany and the Netherlands. The value of the proposed model lies in its simplicity and in the fact that it is based on a universal natural mechanism, which through the presentation of an equivalent dynamical system apparently documents and provides a better understanding of the dynamical process behind viral epidemic spreads in general—even pandemics, such as in the case of COVID-19—further allowing us to come closer to controlling such situations. Finally, this model allowed the study of dynamical characteristics such as the memory effect, through the autocorrelation function, in the studied epidemiological dynamical systems

    Tachyons and Solitons in Spontaneous Symmetry Breaking in the Frame of Field Theory

    No full text
    This paper presents our study of the presence of the unstable critical point in spontaneous symmetry breaking (SSB) in the framework of Ginzburg–Landau (G-L) free energy. Through a 3D Ising spin lattice simulation, we found a zone of hysteresis where the unstable critical point continued to exist, despite the system having entered the broken symmetry phase. Within the hysteresis zone, the presence of the kink–antikink SSB solitons expands and, therefore, these can be observed. In scalar field theories, such as Higgs fields, the mass of this soliton inside the hysteresis zone could behave as a tachyon mass, namely as an imaginary quantity. Due to the fact that groups Ζ(2) and SU(2) belong to the same universality class, one expects that, in future experiments of ultra-relativistic nuclear collisions, in addition to the expected bosons condensations, structures of tachyon fields could appear

    Empirical Characterization of ReRAM Devices Using Memory Maps and a Dynamic Route Map

    No full text
    Memristors were proposed in the early 1970s by Leon Chua as a new electrical element linking charge to flux. Since that first introduction, these devices have positioned themselves to be considered as possible fundamental ones for the generations of electronic devices to come. In this paper, we propose a new way to investigate the effects of the electrical variables on the memristance of a device, and we successfully apply this technique to model the behavior of a TiN/Ti/HfO2/W ReRAM structure. To do so, we initially apply the Dynamic Route Map technique in the general case to obtain an approximation to the differential equation that determines the behaviour of the device. This is performed by choosing a variable of interest and observing the evolution of its own temporal derivative versus both its value and the applied voltage. Then, according to this technique, it is possible to obtain an approach to the governing equations with no need to make any assumption about the underlying physical mechanisms, by fitting a function to this. We have used a polynomial function, which allows accurate reproduction of the observed electrical behavior of the measured devices, by integrating the resulting differential equation system
    corecore