30 research outputs found
Why energy models should integrate social and environmental factors : Assessing user needs, omission impacts, and real-word accuracy in the European Union
Unidad de excelencia María de Maeztu CEX2019-000940-MEnergy models are used to inform and support decisions within the transition to climate neutrality. In recent years, such models have been criticised for being overly techno-centred and ignoring environmental and social factors of the energy transition. Here, we explore and illustrate the impact of ignoring such factors by comparing model results to model user needs and real-world observations. We firstly identify concrete user needs for better representation of environmental and social factors in energy modelling via interviews, a survey and a workshop. Secondly, we explore and illustrate the effects of omitting non-techno-economic factors in modelling by contrasting policy-targeted scenarios with reality in four EU case study examples. We show that by neglecting environmental and social factors, models risk generating overly optimistic and potentially misleading results, for example by suggesting transition speeds far exceeding any speeds observed, or pathways facing hard-to-overcome resource constraints. As such, modelled energy transition pathways that ignore such factors may be neither desirable nor feasible from an environmental and social perspective, and scenarios may be irrelevant in practice. Finally, we discuss a sample of recent energy modelling innovations and call for continued and increased efforts for improved approaches that better represent environmental and social factors in energy modelling and increase the relevance of energy models for informing policymaking
Modelling of Signal Transduction Pathways in cells
188 σ.Η μοντελοποίηση των μονοπατιών μεταγωγής σημάτων μεταξύ των κυττάρων είναι υψίστης σημασίας για την κατανόηση της λειτουργίας τους. O όρος αυτός αναφέρεται στη διαδικασία αναγνώρισης των σχέσεων που διέπουν τη διάδοση των σημάτων από τη μία πρωτεΐνη στην άλλη, εξηγώντας τελικώς τρόπους με τους οποίους τα κύτταρα αντιδρούν και αποκρίνονται σε παράγοντες του βιοχημικού τους μικρό-περιβάλλοντος. Τα μονοπάτια σηματοδότησης αποτελούνται από ένα σύνολο πρωτεϊνικών αλληλεπιδράσεων, οι οποίες αναγνωρίζονται μέσω πρωτεϊνικών διαδικασιών υψηλής απόδοσης και διατίθενται μέσω διαδικτυακών βάσεων δεδομένων. Κατά τη διάρκεια των τελευταίων χρόνων έχουν αναπτυχθεί αρκετές μέθοδοι για τη μοντελοποίηση τέτοιων μονοπατιών αποσκοπώντας στην περιγραφή των λειτουργιών των κυττάρων και στην επεξήγηση της σχέσης αιτιότητας που διακρίνει τις ασθένειες και τα συμπτώματά τους. Κύριος στόχος των μεθόδων αυτών είναι η μοντελοποίηση των βιολογικών δικτύων σηματοδότησης ως λογικά μοντέλα και η χρήση συμβατικών μορφών βελτιστοποίησης (Ακέραιος Γραμμικός Προγραμματισμός – ILP και Μη – Γραμμικός Προγραμματισμός – NLP) συνδυάζοντάς τις με φωσφοπρωτεομικά δεδομένα υψηλής απόδοσης για τη δημιουργία μοντέλων ικανών να προβλέψουν τους μηχανισμούς σηματοδότησης του εξεταζόμενου κυτταρικού τύπου. Η παρούσα εργασία αποστασιοποιείται από τις προαναφερθείσες μεθόδους και τη λογική της δομημένης βελτιστοποίησης και στοχεύει στην ανάπτυξη ενός συνοπτικού κώδικα, ο οποίος θα μπορεί να δέχεται τα παραπάνω δεδομένα και να εξάγει την τελική τοπολογία (κατά βέλτιστο ανά περίσταση τρόπο), η οποία θα ανταποκρίνεται στα δεδομένα των μετρήσεων, λαμβάνοντας ταυτόχρονα υπ’ όψιν της τους υπάρχοντες περιορισμούς που υπαγορεύονται από τη θεωρία της βιολογίας, τη διεθνή βιβλιογραφία και τα υπάρχοντα δεδομένα στο διεθνές δίκτυο βάσεων δεδομένων.Modelling of Signal Transduction in Cells is highly significant for understanding of their function. It refers in the recognition process of the signal transduction between proteins, explaining the ways cells perceive their biochemical microenvironment.Βασίλειος Α. Σταύρακα
An Ex-Post Assessment of RES-E Support in Greece by Investigating the Monetary Flows and the Causal Relationships in the Electricity Market
One way to perceive the electricity market is as a network of actors connected through transactions and monetary flows. By exploring the monetary flows in the electricity market, one adopts a holistic view which can provide insights on the interactions between different components of the benefits and costs, as well as on the possible conflicts or alliances between the involved actors of the system. The importance of such an analysis becomes even more evident when considering if the system’s state would change due to either the effectuation of a policy measure or a shift in the external drivers of the system. Additionally, by identifying conditions of conflicting interests between the involved actors, one can devise a roadmap of least-resistance for a policy measure to attain its goals. Our work is based on the premise that understanding and quantifying the monetary flows in the electricity market can contribute to the efficiency assessment of policy interventions in the market. We present a structured analytical framework and the results of a quantitative analysis, based on available public domain data, for the identification of the main drivers and interactions that governed the major monetary flows in the Greek wholesale electricity market, from 2009 to 2013 and the ex-post assessment of the market impact of the feed-in-tariffs scheme that was in place during this period
Assessing the coverage of data collection campaigns on Twitter: A case study
Abstract. Online social networks provide a unique opportunity to access and analyze the reactions of people as real-world events unfold. The quality of any analysis task, however, depends on the appropriateness and quality of the collected data. Hence, given the spontaneous nature of user-generated content, as well as the high speed and large volume of data, it is important to carefully define a data-collection campaign about a topic or an event, in order to maximize its coverage (recall). Motivated by the development of a social-network data management platform, in this work we evaluate the coverage of data collection campaigns on Twitter. Using an adaptive language model, we estimate the coverage of a campaign with respect to the total number of relevant tweets. Our findings support the development of adaptive methods to account for unexpected real-world developments, and hence, to increase the recall of the data collection processes
Striving towards the Deployment of Bio-Energy with Carbon Capture and Storage (BECCS): A Review of Research Priorities and Assessment Needs
Assessing the performance or the implications of climate change mitigation options (CCMOs) is instrumental in achieving research and innovation efficiency in the field of climate change and becomes more imperative considering the Paris Agreement (‘the Agreement’). Many climate scientists already believe that meeting the Agreement’s goals and stabilizing “well-below 2 °C above pre-industrial levels” signals the deployment of currently undetermined and contentious mitigation technologies, such as bio-energy with carbon capture and storage (BECCS). BECCS is considered one of the most promising negative emissions technologies (NETs) with many scenarios already exhibiting its mitigation potential. However, stakeholders and policymakers remain skeptical about widespread reliance on BECCS questioning its unproven credibility. In this article, we aim at identifying research priorities and assessment needs to intensify the further deployment of BECCS, considering relevant technology associations’ and platforms’ perspectives and insights raised by scientific literature. The main outcome of our study is a list of 10 research priorities along with more specific assessment needs for each priority area. We also focus attention on several implications for potential end-users involved in the field of policy and practice. Overall, our work seeks to bridge the gap between market/industry and academia and to assist policymakers to make better-informed decisions