4,077 research outputs found

    Mark 14:1-11: exegesis case study

    Get PDF
    Mark 14-1

    Simulation of Consensus Model of Deffuant et al on a Barabasi-Albert Network

    Full text link
    In the consensus model with bounded confidence, studied by Deffuant et al. (2000), two randomly selected people who differ not too much in their opinion both shift their opinions towards each other. Now we restrict this exchange of information to people connected by a scale-free network. As a result, the number of different final opinions (when no complete consensus is formed) is proportional to the number of people.Comment: 7 pages including 3 figs; Int.J.MOd.Phys.C 15, issue 2; programming error correcte

    Quantum interference effects in particle transport through square lattices

    Get PDF
    We study the transport of a quantum particle through square lattices of various sizes by employing the tight-binding Hamiltonian from quantum percolation. Input and output semi-infinite chains are attached to the lattice either by diagonal point to point contacts or by a busbar connection. We find resonant transmission and reflection occuring whenever the incident particle's energy is near an eigenvalue of the lattice alone (i.e., the lattice without the chains attached). We also find the transmission to be strongly dependent on the way the chains are attached to the lattice.Comment: 4 pages, 6 figures, submitted to Phys. Rev.

    The Fiscal Operations of Government

    Get PDF

    Alternative criterion for two-dimensional wrapping percolation

    Full text link
    Based on the differences between a spanning cluster and a wrapping cluster, an alternative criterion for testing wrapping percolation is provided for two-dimensional lattices. By following the Newman-Ziff method, the finite size scaling of estimates for percolation thresholds are given. The results are consistent with those from Machta's method.Comment: 4 pages, 2 figure

    Local interaction scale controls the existence of a non-trivial optimal critical mass in opinion spreading

    Full text link
    We study a model of opinion formation where the collective decision of group is said to happen if the fraction of agents having the most common opinion exceeds a threshold value, a \textit{critical mass}. We find that there exists a unique, non-trivial critical mass giving the most efficient convergence to consensus. In addition, we observe that for small critical masses, the characteristic time scale for the relaxation to consensus splits into two. The shorter time scale corresponds to a direct relaxation and the longer can be explained by the existence of intermediate, metastable states similar to those found in [P.\ Chen and S.\ Redner, Phys.\ Rev.\ E \textbf{71}, 036101 (2005)]. This longer time-scale is dependent on the precise condition for consensus---with a modification of the condition it can go away.Comment: 4 pages, 6 figure
    corecore