3,916 research outputs found

    Influence of a small fraction of individuals with enhanced mutations on a population genetic pool

    Full text link
    Computer simulations of the Penna ageing model suggest that already a small fraction of births with enhanced number of new mutations can negatively influence the whole population.Comment: 10 pages including 6 figures; draf

    Number of spanning clusters at the high-dimensional percolation thresholds

    Full text link
    A scaling theory is used to derive the dependence of the average number of spanning clusters at threshold on the lattice size L. This number should become independent of L for dimensions d<6, and vary as log L at d=6. The predictions for d>6 depend on the boundary conditions, and the results there may vary between L^{d-6} and L^0. While simulations in six dimensions are consistent with this prediction (after including corrections of order loglog L), in five dimensions the average number of spanning clusters still increases as log L even up to L = 201. However, the histogram P(k) of the spanning cluster multiplicity does scale as a function of kX(L), with X(L)=1+const/L, indicating that for sufficiently large L the average will approach a finite value: a fit of the 5D multiplicity data with a constant plus a simple linear correction to scaling reproduces the data very well. Numerical simulations for d>6 and for d=4 are also presented.Comment: 8 pages, 11 figures. Final version to appear on Physical Review

    Noise driven dynamic phase transition in a a one dimensional Ising-like model

    Full text link
    The dynamical evolution of a recently introduced one dimensional model in \cite{biswas-sen} (henceforth referred to as model I), has been made stochastic by introducing a parameter β\beta such that β=0\beta =0 corresponds to the Ising model and β\beta \to \infty to the original model I. The equilibrium behaviour for any value of β\beta is identical: a homogeneous state. We argue, from the behaviour of the dynamical exponent zz,that for any β0\beta \neq 0, the system belongs to the dynamical class of model I indicating a dynamic phase transition at β=0\beta = 0. On the other hand, the persistence probabilities in a system of LL spins saturate at a value Psat(β,L)=(β/L)αf(β)P_{sat}(\beta, L) = (\beta/L)^{\alpha}f(\beta), where α\alpha remains constant for all β0\beta \neq 0 supporting the existence of the dynamic phase transition at β=0\beta =0. The scaling function f(β)f(\beta) shows a crossover behaviour with f(β)=constantf(\beta) = \rm{constant} for β<<1\beta <<1 and f(β)βαf(\beta) \propto \beta^{-\alpha} for β>>1\beta >>1.Comment: 4 pages, 5 figures, accepted version in Physical Review

    Isostaticity of Constraints in Jammed Systems of Soft Frictionless Platonic Solids

    Get PDF
    The average number of constraints per particle in mechanically stable systems of Platonic solids (except cubes) approaches the isostatic limit at the jamming point (12 \rightarrow 12), though average number of contacts are hypostatic. By introducing angular alignment metrics to classify the degree of constraint imposed by each contact, constraints are shown to arise as a direct result of local orientational order reflected in edge-face and face-face alignment angle distributions. With approximately one face-face contact per particle at jamming chain-like face-face clusters with finite extent form in these systems.Comment: 4 pages, 3 figures, 4 tabl
    corecore